é(RAD AMSTRAD AMSTRAD AMS}
¢
2 il The
E
0 $4.50
E The independent AUSTRALIA_N magazine for Amstrad users DECEMBER, 1987
< Registered by Australia Post — Publication No. TBP 1053 A Database Publication
a
<
=
)
=
g
a
q
=
1))
=
o«
a
g
1n
[SANTA'S SLEIGH — GAME OF THE MONTH *
e EASY DRAW - DRAW ON YOUR SCREEN ®
E o BIG SAVINGS ON BACK ISSUES OF MAGAZINES -
4 e GREAT SPECIALS ON SOFTWARE -

YMSTRAD - AMSTRAD =¢4

hy England’s top selling PC is a
etter choice for your business.

A few years ago, Amstrad developed an idea
which has made their Personal Computer
the number one seller in the United Kingdom
and Europe.

The idea, put simply, was to create the best
value PC in the world. That's why every Amstrad
PC comes complete with everything you need to
make it useful.

first quarter, 1987.

operating
manual

U.K. BUSINESS MICRO SALES

Others 23.5%

Compagq 3.1%
Apple 3.6%—

Olivetti 4.7% 4
Apricot 5.7%

By unit sales for

Value for money. The essence of
a greatidea.

Operating software and a monitor, expensive

extra’s on many PC’s, are standard features of the
Amstrad package. As are the mouse, keyboard,
disc drive and an informative manual.

Added to this, Amstrad PC’s are IBM*
compatible. Thus, the capabilities of your system

Mouse". the
ost

excellent programs.
y of

You have the flexibility
to perform the most
advanced to the
simplest of computing
tasks.

are virtually endless
A total PC-package from around $1499. because you have
a : access to thousands of

4. 5'/+inch disc drive standard.

All this for about
half what you'd expect
to pay. And fully
backed by one of
Australia’s foremost
electronics companies.

Monochrome monitor standard.

Double 5'/+inch disc drive, 20mb hard disc drive and colour monitor packages also available.

Distributed and guaranteed by
Mitsubishi Electric AWA.

Amstrad is distributed through an Australia-
wide dealer network and guaranteed for twelve
months by Mitsubishi Electric AWA. Contact your
Amstrad dealer today and see why Amstrad is a
better choice for your business.

For the name of your nearest dealer,
telephone: Sydney (02) 638 8444; Melbourne
(03) 357 1688; Brisbane (07) 277 0100; Perth
(09) 277 7788; Adelaide (08) 340 1033; Hobart
(002) 72 4366.

*IBM is the trademark of International Business

Built on a grek’at idea.

TPB 1618

i

12

18

18

Contents

Feature
Painting by Numbers — lan Sharpe
expands the idea of mathematical

trees to produce some attractive
landscapes

Machine Code

Still carrying the flag — Part 9 of Mike
Bibby's introduction to machine code

Review

Shane Kelly reviews AMX's new
MAX.

Graphies in

Ma@hﬁm@ Code

The multi-coloured aliens are
landing — part 2 of Roland
Waddilove's series

Turtle Graphics

lan Sharpe continues his exploration
of turtle graphics

[First Steps

Decisions, decisions ...
Bibby

by Pete

21

26

47

53

55

56

60

Th@@@k@@mm@m@]

Patrick de Geest shows us how to
take a peek and double it

Amﬁﬁx

12 full pages of reviews and tips

Easy Draw

An extensive explanation of this
powerful utility, together with a full
program listing

Review

Think BIG and get yourself noticed —
lan Sharpe tells all

PCW Machine @@@]@
» »@W@phn@@

Roland Waddilove introduces a new
series

Game of the Month
Santa's Sleigh | |

How Basle Works

John Hughes explains

Published monthly by Planet Publishing Pty Ltd
under licence from Database Publications Ltd.
Mail: PO. Box 11, Blackmans Bay, Tasmania 7052.
Telex: AA58134, Attn. HT163 General enquiries, phone (002) 29 4377

Computing With The Amstrad — December1987 3

PRNUING

Computing with the Amstrad
readers are forever asking for more
articles on graphics, so to help fill
your insatiable appetites, here's
more.

Trees caught my attention in
Microcomputer Graphics by Mike
Batty (Chapman Hall 1987 ISBN 0
412 28540 1). The author intro-
duces simple graphics routines and
develops them into interesting pic-
ture generating programs.

Poor old Mike uses the BBC
Micro for his examples (we all have
our crosses to bear), but BBC Basic
does have procedures which can be
called recursively with local vari-
ables and Mike takes advantage of
these features to generate his trees.

Of course we don’t have proce-
dures on the Amstrad and using

Figure I: A simple tree

Robin Nixon’s bolt—on routine from
the May 1987 issue would have
been admitting defeat. So I set
about writing my own tree routine
to get round the problems and came
up with Program I. It’s not an adap-
tation of the BBC Micro version but
a different way of producing the
same results.

The idea is that the tree is com-
posed of branches, and at the end of
eachtwonewbranches grow. At the
tip of the new branches are two
more and so on. You can see what I
mean in Figure I.

expands the idea’
~of mathematical
trees to produce
_some attractive

¥ ¥ A 8 ¥
ARHAND W EBHEY
R A

Figure II: Typical landscape created by Program I1

IAN SHARP

landscapes

Before we see how it works try it
out for yourself. You will be
prompted for three parameters —
angle, depth and size. Angle is the
angle of the V between two
branches, depth is the number of
times the tree is to subdivide and
size is the length of the stem be-
tween its start and where it first
splits into two. To begin with, try
values of 45,8 and 110 respectively.

Also have a look at
120,10,150,180,10,200 and
270,10,200.

What happensis that every time

#_I:f"u”, , xrar'.vnf #?’* .

4 Computing With The Amstrad — December 1987

aVisdrawn the program calculates
the coordinates of the tips. It takes
the right-hand fork, draws a line to
the tip and in the array stack it
stores the details — size, coordi-
nates, angle — of the left-hand tip
which it can’t deal with yet. It re-
peats the process, always taking
the right fork and storing the left
until it has gone to the required
level held in depth.

If you think about it, the maxi-
mum number of left shoots stored in
stack can’t be more than depth.
When the required number of
shoots have been drawn by taking
right turns, the routine backtracks
in stack to the details of the last left
turn it missed. The program uses a
pointer —sp —to keep track of which
part of stack it is taking its parame-
ters from.

It follows this new route, again
always forking right and remem-
bering places it needs to come back
to. In this way nothing is left out
and eventually the entire tree is
plotted. At this point there are no
more parameters stored in stack.
The program detects this and
comes to an end.

To obtain the trunk, stack is ini-
tialised with just enough informa-
tion for one leg of the first V.

Program II —Landscape —uses a
modified tree routine to introduce
thickness, colour and some random
elements to the branches which
gives an impression of a real tree
with spring foliage.

Using moreideas borrowed from
Mike Batty other parts of Program
II draw clouds, water, hilly back-

ground and a foreground. Again

these are controlled by overall rules
with random factors, so a different
but convincing arrangement
emerges every time the program is
run.

One such scene is shown in Fig-
ure Il and I think you'll agree that it
isn’t bad for something created by a
few dozen lines of Basic.

I don’t make any claims for its

artisticmeritbutit’sfar better than
I could achieve by hand. Landscape
isn’t perfect, but it’s fairly simple
and like many of the programs we
publish, it’s the starting point for
your own ideas.

This program illustrates one of
the fundamental points in Micro-
computer Graphics. Mike Batty is
at pains to highlight the distinction
between art on a computer and
computer art. The first is where the
artist uses a drawing package to
create pictures on the screen.

He isn’t doing anything differ-
ent to his colleague working with
paints, just using a different me-
dium, though the coarseness of a
home computer display makes the
level more akin to embroidery or
tapestry.

Inthe second case, computerart,
the computer generates the picture
from a model programmed by the

artist. This is a new concept
brought about by the availability of
machines which are programmable
and have good display capabilities.
It opens up a new world of creative
graphics to conventional artists
and those who have artistic inclina-
tions but may lack the manual
skills.

I'll leave you to ponder two ques-
tions that puzzle a lot of people —is
computer art really art and if so,
does the art lie in the program or in
the display on the screen?

If you want to see some impressive
graphics created on main—frames
with very high resolution displays,
ask at your library for Creative
Computer Graphics by Jankel and
Morton (Cambridge University
Press 1984 ISBN 0 521 26251 8).
It’ll remove any doubts on the first
point and give you food for thought
on the second.

10 REM Program I - Trees

20 REM by Ian C. Sharpe

30 REM (c) Computing With The Amstrad
40 REM———————— CPC———————————————
50 DEFINT a-z:DEG:MODE 1

80
70

O:stack(sp,1)=0:stack(sp,2)=angle/
2:stack(sp,3)=depth+1
80 CLS:ORIGIN 320, 10:sp=0:i=1

90
100

=sp-1:IF sp=-1 THEN END ELSE 100

110

stack(sp,2)

120
130
140
150
160
170

3)=f

220

Program I: The basic tree routine

INPUT "Angle,Depth,Size? ",angle,depth,size
DIM stack(depth,3):stack(sp,0)=

REM\———-—-—-"-""""riii -
f=stack(sp,3)-1:IF f=0 THEN sp

x=stack(sp,0):y=stack(sp,1l):a=

s=sizex0.75"(depth-f-1)
a(0)=a-(angles2):a(1)=a+(angle/2)
tX=x+sXSIN(a(0)):ty=y+sxC0S(a(0))
MOVE x,y:DRAW tx,ty

GOSUB 190:GOSUB 190

sp=sp+1:GOTO 100

i=i XOR 1
stack(sp+i,0)=tx:stack(sp+i, 1)
stack(sp+i,2)=a(i):stack(sp+i,

RETURN

Computing With The Amstrad — December1987 5

10 REHM Program II - Landscape
20 REHM by Ian C. Sharpe

30 REM (c) Computing With The Amst
rad

40 REM-———--—---"""———————— — — ——————

50 DEFINT a-z:DEFREAL r,w

60 RANDOMIZE TIME:DEG:DEF FNrn(r)=
CINT (RNDxr)

70 MODE 1:BORDER 1:INK O,0:INK 1,1
1:INK 2,18:INK 3,28

80 REM —-—- Sky & big fluffy clouds
90 PAPER 1:CLS:PAPER O

100 FOR clouds=1 TO S5+FNrn(2)

110 cloudx=30+FNrn(580) :cloudy=330
+FNrn(10xclouds)

120 FOR fluffybit=1 TO 4+FNrn(2)
130 ex=cloudx-50+FNrn(100):ey=clou
dy—-30+FNrn (60)

140 er1=60+FNrn(8%xclouds):ratio=0.

1+RNDxO. 2
150 GOSUB 380:NEXT:NEXT
160 REM ---- Sea, ground & hills -

170 LOCATE 1,9:PRINT STRING$(200,1
27)3

180 PEN 2:PRINT STRING$(240,208);S
TRING$(240,208) 3 :PEN 1

180 FOR dy=0 TO 12:y=182-dyxdy

200 FOR x=0 TO 638 STEP 2:PLOT x,y
+FNrn(8), 1+FNrn(2)

210 NEXT x,dy

220 FOR hills=1 TO 3+FNrn(1)

230 hy=290-hillsx35:ht=(6-hills)x1
1:wlh1=(0. 15+RND)/3:1ift=ht+FNrn(h
t/10):clip=FNrn(ht/6):0ffst=FNrn(2
00)

240 col(0)=2:co0l(1)=FNrn(1)

250 GOSUB 450:NEXT

260 REM - —————- Grow some trees ——-
270 FOR size=40 TO 1680 STEP 15:RAN
DOMIZE TIHME

280 treey=200-size:treex=20+FNrn(6
00):treewid=CINT(size/4)

290 IF TEST(treex,treey+30)<>2 THE
N 280

300 angle=FNrn(6)-44:depth=8+FNrn(
(size—-40)/40)

310 DIM stack(depth,3)

320 stack(0,0)=0:stack(0,1)=0:stac
k(0,2)=angles/2:stack(0,3)=depth+1
330 ORIGIN treex,treey:sp=0:i=1
340 GOSUB 500:0RIGIN O,0:ERASE sta
ck :NEXT

Program II: Landscapes unlimited

350 REM = Press Space when finishe
d: =

360 PRINT CHR$(7);:WHILE INKEY(47)
<>0:WEND:RUN

370 REM ==== Elipse for clouds ===
380 ORIGIN ex,ey:ersq=erlxerl

390 FOR x=0 TO erl STEP 2

400 y=2%ratio*SQR(ersq—-xX*x)

410 MOVE -x,-y/2:DRAWR O,y,3:PLOTR

0,0,1:IF RND<O.25 THEN PLOTR O,-y
420 MOVE x,-y/2:DRAWR O,y,3:PLOTR
O,~-y;1
430 'NEXT:ORIGIN 0,0
440 RETURN
450 REM

4680 FOR x=0 TO 638 STEP 2

470 hh=MAX(1lift+htXSIN(offst+(xxwl

hl)),clip)

480 IF hh>4 THEN MOVE x,hy:DRAWR O
,FNrn(4):DRAWR O,hh,col(z):z=z XOR
1:PLOTR 0,0,2

490 NEXT:RETURN

500 REMN-——==—=m—== Tree———————————

510 f=stack(sp,3)-1:IF f=0 THEN sp

=sp-1:IF sp=-1 THEN RETURN ELSE 51

0

520 x=stack(sp,0):y=stack(sp,1):a=

stack(sp,2)

530 df=depth-f:s=sizexX(0.77df) :bwi

d=2+treewid/ (27df)

540 a(0)=a-(angles/2)+FNrn(4)-2:a(l
y=a+(angle/2)+FNrn(4)-2

550 tx=x-sXSIN(a(0)):ty=y+sxCOS(al

0))

560 xd=tx-x:yd=ty-¥y

570 ix=bwidXCO0S(a(0)):IF ix=0 THEN
ix=1

580 xs=SGN(ix):iy=bwid*SIN(a(0))

590 FOR xx=x+ix TO x STEP —-xs:yy=y

+iyX(xx-x)/ix:MOVE xx,yy:DRAWR xd,

yd,0:NEXT:DRAW X,y,3+(f<FNrn(3)+de

pthx0.35)

800 GOSUB 830:GOSUB 630

810 sp=sp+1:GOTO 510

i=i XOR 1

B840 stack(sp+i,0)=tx+iXix/2:stackl(
sp+i, 1)=ty+i+iy/2

B850 stack(sp+i,2)=a(i):stack(sp+i,
3)=f

660 RETURN

6 Computing With The Amstrad — December 1987

sull

carrving

the
flag

Last month we spent a lot of time
looking at the Carry flag — particu-
larly how it could be used together
with CP to createloops, filterinputs
and so on.

However, the Carry flagisn’t the
only flag on the Z80: There are six
altogether. The one we’re inter-
ested in at the moment, though, is
the Zero flag.

Actually, the Zero flag’s name
virtually tells you what it does —the
Zeroflagis set when the “answer” to
some machine code operation
comes to zero.

For example:

LD A&FF
ADD A&O1

RET

Program I

Part IX of MIKE BIBBY’s
introduction to machine code

Don’t worry about it — the actual
values of flags don’t really concern
us. All we need to know is what

will not only leave 0 in the A regis-
ter, it will also set the Zero flag to
tell us the result of the operation

was zero. conditions set and clear the flag. In
Similarly: this case the Zero flag is set when
» the result of an operation is zero,

LD A&DF and cleared when not.

- SUB &DF

RET Not every instruction affects the
Zero flag, but you’ll soon get used to
Program I the ones that do — they’re fairly

obvious.

will both leave zero in A and set the

Zero flag. You’ll probably remember that

we had a pair of jump instructions
based around the Carry flag—JP C

So, if an ADD or SUB leaves zero
and JP NC.

in the Aregister, the Zero flagis set.
If the result is non—zero, the Zero

flag is cleared. Well, we have a corresponding

pair of jump instructions involving

If you think about it, it’s rather the Zero flag.
topsy—turvy: When the result is
zero you set the Zero flag — to one. JP Z (opcode &CA)

And when the result is not zero, you
clear the Zero flag — to zero. One
when it’s zero, zero when it’s not!

performs the jump if the Zero
flag has been set, and

Computing With The Amstrad — December1987 7

JP NZ (opcode &C2)

takes the jump if the Zero flag is
not set — that is, it’s clear.

Take a look at Program III. It
shouldn’t present you with any
problems, we’ve met it twice before:

way. In the above example it’s just
coincidence that both are set at the
same time — it isn’t always so.

To prove it, take a look at Pro-
gram V. We‘re using INC A (&3C) to
increase A by 1 instead of the ADD
A 1. Otherwise it’s identical to Pro-

It was our first loop. gram IV, but one byte shorter.
address he» e iaddréss hex code _ mnemonics

-- excodg mnemomc; 3000 3E20 LDAM
3000 3E20 DA 0 | |270F U
3002 CD5A BB CALLCharOut 3002 CDSABB CALL CharOut
3005 C601 ADDA1 3005 3C INCA
3007 D202 30 JPNC, &3%2 | 3”25 ; 32”23@‘ JPNZ, 83002
"0GA €3 RET o@s e
Program III Program V

You’'ll remember that we keep on
incrementing the A register and
jumping back to print out the corre-
sponding Ascii code until we go
round the clock —and in so doing set
the Carry flag.

However, at the same time, the
Zero flag will be set since the last
ADD A,1 adds1 to the 255 (&FF) in
the A register, giving us zero.

This means we could rewrite
Program III with aJPNZ, &3002in
place of the JP NC, &3002 — and
this is what we do in Program IV

address hexcode mnemonics
3000 3E 20 LD A%20
3002 CD5ABB CALL CharOut
'3GQ5 . C601 - ADD A1
3007 C20230 JPNZA&3002
SagA- Cg o HEY o
Program IV

Here we keep on performing the
loop until the Zero flag is set by the
ADD A,1 when A contains &FF. We
then drop through the loop and
RET.

Don’t get the idea that the Carry
and Zero flags are linked in any

As you'll see, it works fine.

However, if, as in Program VI,
we replace the JP NZ with JP NC —
which we might doif we thought the
Zero and Carry flags were linked —
disaster occurs.

The point is that INC A sets or
clears the Zero flag depending on
the result of increasing A by one.
However, INC A doesn’t affect the
Carry flag at all.

This means the Carry flag is not
set when A is increased from 255 to
0. The loop therefore keeps going,
effectively printing out CHR$(1),
CHR$(2) and so on.

However the Ascii codes under
32(&20) are control codes, which as
you'll see from the User Guide, have
some pretty powerful effects.

ddress hex code mnemonics

000 3E20 LD A&20

@02 CD5ABB CALL CharOut

2095 3C INCA

206 D20230 JPNC, &3002

go9 C9 RET
Program VI

In practice, your screen will lock
up: your micro has crashed. Don’t
worry, you haven’t hurt it — it’s just
that you’ll have to reset the ma-
chine to regain control. Unfortu-
nately, in doing so, you'll lose what-
ever program is in memory —in my
case Hexer, my hexadecimal
loader.

My advice is that you don’t run
Program VI until the end of the
session, when you're ready to
switch off anyway ... It certainly
demonstrates the fact that the
Carry and Zero flags are independ-
ent — in a way you’re not likely to
forget.

Actually, despite the obvious
error in Program VI, there’s a sub-
tler one. We've assumed that the
Carry flag is clear when we enter
the program.

Think about it. If, when we run
the program —either from Hexer or
directly by CALL &3000 — the
Carry flag were already set, it
would remain so throughout the
first three instructions.

As we've said, LD instructions
don’t affect the Carry flag, so LD
A,&20 will leave Carry set, as will
the call to CharOut. And, as we've
already mentioned, INC A doesn’t
affect it.

This means that when we reach
the JP NC, we don’t take the jump,
since Carry has been set from the
beginning. We would then exit our
routine via the final RET, having
just printed out a space (Ascii &20).

In practice this doesn’t happen.
When we enter the routine, Carry is
clear, and remains so since none of
the instructions affects it. Hence
the JP NC is always taken and we
crash.

8 Computing With The Amstrad — December 1987

Still, in machine code, it’s wrong
to assume what the state of a par-
ticular flag will be. Doing so often
causes elusive bugs in programs.

So in Program VI, we shouldn’t
just hope that Carry will be clear,
we should force the issue. It would
be nice if we could do this with a
single Z80 instruction. Unfortu-
nately, no such instruction exists.

However we can clear Carry
with:

ADD A,2 (C6 @Q)

After all, you can’t go round the
clock by adding zero to anything,
can you? And ADD does affect the
Carry flag, so in this case Carry
must be cleared. The added bonus
(no pun intended) is that the con-
tents of the A register remain un-
changed — think about it.

Thus the effect of ADD A,O is to
clear the Carry flag for us, without
affecting the contents of the A regis-
ter.

Right, we know how to clear the
Carry flagwhen we want to—so how
do we set it?

Well, this time there is an in-
struction that fits the bill — SCF
(opcode &37). SCF stands for Set
Carry Flag.

Program VII shows a trivial ex-
ample of the use of these ideas.

address hexcode ~ mnemonics
3000 3E 07 LD A7

3002 C6 90 ~ ADD AP
3004 DAQQO30J PC, &3000
Por 3¢ - SCF

3008 D20@3303 JPNC, &3000
300B CD5ABB CALL CharOut
300E C9 RET '
Program VII

Asyou can see, there are two con-
ditional jumps which take you back
to the beginning of the program.
I've used ADD A,0 before the first
and SCF before the second to rig
things so that the jumps are not
taken.

We go straight through to CALL
CharOut, which gives us a bleep. If
we get any of our conditional jumps
the wrong way round, or if we set
when we should clear, we’ll get
stuck in an infinite loop.

Program VIII shows another
rather contrived example. If you
follow through its rather tortuous
path you’ll see that, because of the
way we've manipulated the Carry
flag, nothing gets printed out.

If the byte in the A register is
identical to n, the zero flag is set.

If the two bytes differ, the zero
flag is cleared.

This is only what you’d expect. If
the two bytes are the same, when
the CP n does its simulated A —n,
the answer mustbe zero, so the Zero
flag’s set.

If, on the other hand, the bytes
vary, the answer is non—zero and
the flag is cleared.

We can use this to “demand” that
a certain character be input from
the keyboard, as in Program IX,
where we wait for an asterisk:

‘address hex code mnemonics
3000 3E2A LDAR2A
3002 C600 ADDag@
3004 D2 QA 30 JP NC, &300A
3007 CD5ABB CALL CharQut
300A 37 SCF
300B DA1130 JP C&3011
300E CD5ABB CALL CharOut
3011 C9 RET

Program VIII

Can you alter things so that you
do indeed get two asterisks (Ascii
code &2A) appearing on the screen?
Hint: Have a good look at the condi-
tions attached to those JP instruc-
tions.

Right, back to the Zero flag. Last
month we saw that the CP n in-
struction, while not altering the A
register, set and cleared the Carry
flag as if a SUB n had been per-
formed:

Carry was setifA<n
Carry was clear if A >=n

You won’t be surprised to learn
that CP n also affects the Zero flag
as well:

address hexcode mnemonics
3000 CD18BB CALLCharin
3003 FE2A CP&2A

3005 C20030 JPNZ &3000
3008 CD5ABB CALLCharOut
300B C9 “RET -

Program IX

The program works by compar-
ing the input character with the
Ascii for an asterisk. If it is an
asterisk, the zero flag is set and,
ignoring the jump, we print it out
and return.

If it isn’t an asterisk, the codes
will differ and the Zero flag will be
cleared. We then jump back to the
beginning, to get another character
from the keyboard.

So far, when using CP, we've
compared the A register with a
specific number. We can, however,
compare the A register with any
other of our single registers, as
Table I shows. The notation for this
form of instruction is CP r, where r
is an eight bit register.

Computing With The Amstrad — December1987 9

CP B, for example, compares the
byte in the A register with that in
the B by doing a dummy A-B and
setting the flags accordingly — the
contents of both registers remain
unchanged. Note, the register
specified is subtracted from the A
register.

Again, if A is equal to or greater
than B, Carry is clear. If A is less
than B, Carry is set. Also, if the
bytesin A and B are equal, the Zero
flag is set, otherwise it’s cleared.

We put this ability to compare
our eight bit registers to use in
Program X. Here our task is toprint
out a fixed number of asterisks —
eight in this case.

: }_mnemonlcs
LDBO
 LDARA
 CALL CharOut
__ INcB
LD A,&GB .

Program X

We use the B register as a
counter. Initially we set it to zero
with LD B,0 and then print out an
asterisk by loading A with &2A and
calling CharOut. We next increase
B, thus keeping track of the number
of asterisks printed. We then load A
with 8, the number of asterisks,
then compare the B register with A.

Ifthe two registers aren’t equal —
thatis,ifthe Zeroflagisnot set—we
haven’t printed eight asterisks so
we jump back to &3002, reloading A
with &2A, calling CharOut and so
on.

If, on the other hand, we've
reached our limit, the Zero flag is

set and the jump isn’t taken so we
simply return.

faddress hex code . mnemonics
3000 0608 LDBS
3002 E2A LDASA
3004 CD5ABB CALL CharOut
3007 ©5 DECB
3008 C20430 JP NX33004
300B €9 RET
Program XI

Actually, the program is rather
tortuous. There are more efficient
ways to print out a number of aster-
isks. I just wanted to introduce the
CPrinstruction. Program XI shows
an alternative way of doing it. The
trick is to count down from the
number you want by using DEC B.

When we reach zero, the Zero
flag is set, otherwise we jump back
and print another asterisk. In ef-
fect, B acts as a primitive loop vari-
able or counter.

You can use this idea to create
nested loops — using the B register
for the inner loop and another for
the outer loop.

Program XII uses this idea to
print out a triangle of asterisks:

" mnemonics

We're going to have eight lines,
eight asterisks in the first, seven in
the second and so on. So each time
round the outer loop we’ll print a
line of asterisks — the inner loop
printing out the required number
each time.

We use C to count the number of
lines —hence the initial LD C,&08 —
and B the number of asterisks.
When you think about it, since
we're using it as a counter, C goes
down by one each time round the
outer loop which is also what we
want to happen to B. Our second
instruction, the beginning of the
outer loop, is therefore LD B,C.

Ifyou look towards the end of the
program, you'll see the end of the
first loop:

3916 @D DECC
3017 C20230 JP NZA&3002

Toreturn to the start of the outer
loop, after LD B,C we load the A
register with the Ascii for asterisk
(LD A,&2A). We then arrive at the
inner loop.

3005 CD5ABB CALL CharOut
3008 @5 DECB
3009 C20@530 JPNZ&3005

Asyou’ll soon see, this prints out
“B asterisks”. Now the value of B
goes down by one each time through
the outer loop since we get it via the
C register (LD B,C) and C is de-
creased by the DEC C at the end of
the outer loop each time. This
means that each line has one less
asterisk than the previous line —
giving us our triangle effect. When
C gets to zero — after we've printed
eight lines — the program drops
through the JP NZ,&3002 of the
outer loop and RETSs. Incidentally
the lines between the JP NZs of the
inner and outer loops.

continues page 24

10 Computing With The Amstrad —

hex code
- QE 08 LD Ca08
44 [DRC
. 3E2A LDAB2A
 CD5ABB CALL CharOut
@5 - DECB
. C20530 JP NzZ,&3005
 BEQA LDAS&OA '
~ CDSABB CALL CharOut
3EQD LD A&QD
 CDBB5A CALL CharOut
- @D DECC
 C20@23@ JP NZ&3002
Cd RET
Program XII
December 1987

Max Review

My computeris a CPC 464 with a
ram expansion. I, like most of my
computer owning friends, am al-
ways after a larger more powerful
computer. My current passion is for
WIMP’S (no smart remarks,
please!) and the APPLE MACIN-
TOSH is the standard of excellence
in this field. I drool when I see the
power available at the click of a
mouse’s button.

So, when a product dropped
across my desk with the comment
from the supplier that it was
WIMP’'S for Amstrads I naturally
had to look deeper into it.

Basically speaking, AMX’S new
product MAX is a friendly front end
for AMSTRADS. It has pull-down
menus and icons and windows and
you can use your mouse should you
desire (or keyboard or joystick!) to
do all those little chores that had to
be done by typing ***ERA,@A$ etc.
OK, I thought (which I don’t do very
often) these WIMP’S are supposed
to be intuitive so I shouldn’t have to
read the manual to get started.
What happened was this:—

—The screen opened to show the
desktop. Intuitively, I pressed the
cursor keys. Hey presto, the pointer
moved. When I got the pointer over
the disc icon I then pressed the
return button. Nothing happened.
Puzzled but undaunted (and hav-
ing some experience with AMX
PAGEMAKER) I pressed function
key 4 (the ‘execute’ button in PAGE-
MAKER) and guess what? Nothing

By SHANE KELLY

happened. OK, time to hit the
books. Turn to page one of your
MAX manual. The first thing to
read is the warning about destroy-
ing discs which can happen to those
unfamiliar with the system.

¢ After reading that I thought
(again?) that it was time to sit down
and really study the manual as you
should do before you use any piece
of new software.

The manual is clearly and logi-
cally laid out and progresses from
first principles through to an expla-
nation of each item on the desk top,
which even includes notes on the
shortcomings of some of the utili-
ties supplied. For instance, under
the copying of files there are several
notes about the length of files that
can be copied and what happens if
there is an error. Nice touch this as
some software just dumps you back
into the operating system and your
files are in limbeo.

The MAX package contains the
following:

a) the MAX desktop or control
panel. Itis here that the MAX envi-
ronment is altered to suit your indi-
vidual taste and working habits. A
fair amount of control is given:—
you may choose your colour combi-
nations and your keys along with
the speed of the pointer and these
parameters may be saved so that
they are available on start up.

b) Windows — while these are not

as flexible as the MACS they are re-
sizeable and moveable and you are
able to have more than one on the
screen at any one time.

c) Utilities — these are a format-
ter, sector editor, file copier and
printer control (to stop the double
line feed problem). Fairly compre-
hensive instructions on all these
options are given.

MAX is a unique package made
up of standard utilities presented in
a manner that is novel (for CPC’s)
and fun to use. It is robust and
thoughtful and I have found that it
will not upset your delicate stom-
ach by crashing at exactly the
wrong time.

I really don’t know where to put
MAX in the structure of things. I
useit whenIamin BASIC and have
to shuffle files around or recover a
file accidentally deleted. I use it
when I feel the need to pretend that
my computer is more expensive
thanitis,and I useit whenIneed to
impress people who constantly re-
fer to home computers as toys and
so damn difficult to use. (This still
happens quite often these days, I
find). Thisjustifies MAX’s inclusion
in my library of files and justifies
it’s purchase.

If you're looking for a piece of
software thatis truly useful, good to
look at and written well enough to
do what it has to without fuss then
the unique MAX from AMX sys-

tems is for you.

Computing With The Amstrad — December1987 11

The mulTi-coloured
Aliens ARE LANdiNG

Last month we looked at how
the Mode O screen memory was
organised using a few simple
programs ... Now we’re going to
try some short machine code
routines to print a
multi-coloured character on
the screen.

First I'll briefly recap what we
learnt last time.

The screen is organised into rows
of pixels and a single character oc-
cupies 32 bytes of memory, eight
rows of four bytes. The bit pattern of
each byte in the screen memory
holds the information for two hori-
zontal pixels.

Going down the screen the rows
of pixels are in groups of eight.
There are 25 groups on the screen —
these are the lines we LOCATE and
PRINT on. The address of each row
or pixels in the group is &800 more
than the previous row and each
group starts &50 more than the one

10 REM PROGRAM I

20 POKE &9000,8:POKE &9001,4
30 FOR i=0 TO 31
40 READ j: POKE &9002+i,)
50 NEXT

60 REM alien

70 REM Rows=8/Columns=4
80 DATA 4,12,12,8,72,148,104,

109710

90 DATA 156,108,132,28,60,
 bO,44,28

100 DATA 32,16,44,4,48 48,8,

: s!glgi4 3

110 DATA4,0,0,8

Program I

Part Il of ROLAND WADDILOVE'’s
_ series on how to produce a better
class of graphics using machine code

above. Figure I shows the top left
corner of the screen.

To display a normal-size charac-
ter on the screen all that is neces-
saryistowork out thedata required
and store it in eight rows of four
bytes somewhere in the screen
RAM. To make it easy, first we’ll
print a normal-size character ex-
actly on a line.

We need some character data, so
run Program I to poke the data for
an alien to &9001. This information
will be used by the machine code
routines.

Program II is an assembler list-
ing of the routine to print the alien.
You can either use an assembler to
enter the mnemonics, or enter the
hex codes one at a time using Pro-
gram III.

To see Program IT’s print routine
in action enter:

MODE ©:2:2:?
CALL &8000

The alienisprinted in the top left
corner of the screen at &C000.

First BC is loaded with the
number of columns and rows which
is stored at &9000, DE with the
address of the data, &9002 and HL
the screen address where we want

RAW Assembler V.3
Pass ... 2 ORG &8000
PROGRAM I

800Q0:ED 4B 9@ 99 LD BC, (&9900)
8004:11 92 90 LD DE,&9002
8007:21 90 CO LD HL,&CO0Q2
BOOJA: .loop1

80QJA:C5 PUSH BC

80Q@B:E5 PUSH HL

800C: .loop2

80QC:1A LD A,(DE)

800D:77 LD(HL),A

8QQE:23 INC HL

80JF:13 INC DE

8010:10 FA DJNZ loop2
8012:E1 POP HL :
8013:01 99 @8 LD BC,&800
80116:09 ADD HL,BC

8@17:C1 POP BC

8018:0D DECC

8019:20 EF JR NZ,loop1
8011B:C9 RET

801C END

Program II

10 REM PROGRAM llI
20 a-&8000

30 PRINT HEX$(a);" : 7
49 INPUT h$

50 POKE a,VAL(“&”+h$)
60 a=a+1:GOTO 30

Program III

12 Computing With The Amstrad — December 1987

8C000 | &c001 | &Co02 | &C003 | &coos |
|acsoo | scsot | acso2 | acsos | aced |
D000 | &D0O1 | &DO02 | &D003 | &D004 |
&DS00 | &D8O1 | &D802 | &D8O3 &D804
&E000 | &E001 | &E002 &E003 | &E004
&EB00 | &E801 &E802 | &ES03 | &ES04
&F000 | &F001 &F002 &F003 &F004
&F800 | &F801 | &F802 | &F803 | &Fso4 |
&C050 | &C051 | &C052 | &C053 &C054 |
&C850 | 8Ces1 | acss2 | acss3 | acesa | ...
Figure 1 ... Memory map of top 'RAW Assembler V.3 »
left of the Mode 0 screen RAM ,Pass 2 DRG &Bﬁﬁﬁ
PROGRAM IV

it to be printed, &C000. B is the
inner loop counter, the number of
columns, and C is the outer loop the
number of rows.

The loop counters and address of
the row are first saved, then the
inner loop runs along the row col-
lecting the data pointed to by DE
and storing it at the address
pointed to by HL. HL and DE are
then incremented to get the next
data items and screen address.

At the end of the row the address
of the start of the row is restored
and &800 added to HL to get the ad-
dress of the next row. The loop
counters are restored and C, the
number of rows, is decremented.

Ifyou study the routine you'll see
that the width of the character is
irrelevant. It doesn’t have to be four
bytes wide — this just happens to be
the width of our alien.

8000:ED 4B 00 90 LD BC,(89000)
8004:11 @2 99 LD DE,&9002
8007:21 00 EQ LD HL,&EQOQ

Pass 2 ORG &SGQG

PROGRAM V
Sﬂﬂﬁ 21 o0 Cﬁ LD HL,&CO0Q
8003:01 F4 01 LD BC,500
8006: et
SQﬂS:ES . PUSHHL
80Q07.C5 PUSHBC =
8008:CD 17 8@ - CALL print
800B:C1 POP BC
800C:E1 POP HL
800D:23 _INC HL
800E:23 INCHL
800F:23 INCHL
8010:23 INCHL
8011:0B DEC BC
801278 LDAB
8013:B1 '_j...ORC G
8014:20FG JRNZnext
Boi6cy ReY
8017: S onint

8Q0A: Joopt
800A:C5 PUSH BC
800B:E5 - PUSH HL
800C: Joop2
800C:1A LD A,(DE)
800D:77 LD (HL),A
80QE:23 INC HL
800F:13 INC DE
8010:19 FA DJNZ loop2
80112:E1 POP HL
8013:01 00 98 LD BC,&800
8016:09 ADD HL,BC
8017:30 04 JR NC,ok
8019:0150 CO LD BC,&CQ259
801C:29 ADD HL,BC
801D: .0k

801D:C1 POP BC
801E:0D DECC
801F:20 E9 JR NZloop 1
8021:C9 RET

8022: -~ END
Program IV

RAW Assembler V. 3

8017:ED 4B 00 90 LD BC,(29000)

801B:11 9299 LD DE&9002
8Q1E: ~Jloopt
801E:C5 ~ PUSH BC
801F:E5 PUSH HL
8020: loop2
8020:1A LD A,(DE)
8021:77 LD (HL,A
8022:23 INCHL
8023:13 INCDE
8024:19 FA : DJNZ'loop’2‘
8026:E1 : POPHL
8027:010008 LDBC, &Sﬁﬁ
802A:09 ~ ADDHL,BC
802B:30 04 JRNC,0k :
8020:0150C3 LD BC, &CGSﬁ L
8030:99 ADD | HL Bc f
8031: .ok _
8031:C1 POP BC S
8032:29D .DECC
8033:20 E9 JRNX Ioop1 -
8035:C9 oo RET.
8g3%: - END

Program V

Computing With The Amstrad — December1987 13

Bisloaded with the width at the
start and is decremented every
time round the inner loop until it’s
zero. HL and DE areincremented to
give the correct addresses.

What about the height? The
alien is eight pixels deep and we’re
printingit at &C000. The outer loop
adds &800 to the address in HL
each time to get the start of the next
row so the address of the last row is
&F800.

Suppose that the character isn’t
exactly on the line. It might be
printed at the fifth pixel down so
that it’s half on one line and half on
the next.

We'’re going to have problems
here because the character is split
over two groups of eight rows. When
we get down to the bottom row of a
group adding &800 to the address
will not give the address of the row
which is the top of the next group of
eight rows.

In Figure I &C050 is the address
of the first row in the next group of
eight rows, but &F800 + &800 will
be 0. An overflow will occur because
a register pair can only hold num-
bers up to &FFFF, if this is ex-
ceeded it wraps round the 0 again.

What we need to do is check to
see if there has been an overflow,
and if there has then add a correc-
tion factor — &C050. If there hasn’t
been an overflow we’re OK.

Program IV is the same routine
as before but an overflow check has
been added. To test it we’ll print our
alien five pixels down, at &E000.

11

The screen is
‘organised into
rows of pixels
and a single
character
occupies 32
__bylesof
memory, eight
~ rows of four
bytes. The bit
pattern of each
byte in the
screen memory
holds the
information for
two horizontal
pixels.

The first four rows are OK, they
start at addresses &E000, &E800,
&F000 and &F800. Then there will
be an overflow when &800 is added
to HL for the fifth row. This sets the
carry flag so &CO050 is added to
correct the result. Note that a check

is made with each row and not just
the fifth. This makes the routine
general.

Again enter:

MODE ©:2:2:?
CALL &89000

and you’ll see the alien printed
half on the first line and half on the
second.

This short routine will now print
any size multi—oloured character
at any screen address. It doesn’t
matter whetherit’s exactlyonaline
or split over two or more, the code
checks and corrects whenever nec-
essary. Tryit and see! Set HLto any
value from &C000 on, assemble the
routine again and call &8000.

It’s difficult to get any idea of the
speed advantage of the machine
code routine over Basic when only
one character is being printed.
Program V completely fills the
screen with aliens, and considering
that each alienismade up of several
different colours it’s amazingly
fast.

HL is used to store the address
and BC is the loop counter. These
are saved before printing the alien
and restored afterwards. The print
routine itself has been kept sepa-
rate and has been labelled print for
obvious reasons and is called as a
subroutine. The HL register pair is
used to pass the address to print the
character.

e I think that’s enough to digest
for this month. Next time we’ll see
how to get things moving.

14 Computing With The Amstrad —

December 1987

Last month I set you some home-
work that was similar to the group
of squares we looked at — but there
was a catch.

Although the internal angles are
60 degrees the turtle has to turn
through the external angle of 120
degrees to draw them. If you real-
ised that, you should have come up
with something like:

cs
repeat 3 [rt 120 repeat 3 [rt
120 fd! 100 11

Remember what I said about the
exclamation mark — don’t type it in
because it’s only there to show that
thenextlineis a continuation of the
one you’re on.

It doesn’t matter how long you
made the sides of the triangles as
long as you got the right idea. If you
didn’t manage to solve it by yourself
read last month’s article again and
make sure you understand how it
works before going any further.

Experimentation and practice
are the keys to learning any lan-
guage — computer or otherwise.

So far we have been entering in-
structions which the turtle follows
as soon as we type them in. That’s
because we are working in direct
mode which is like typing com-
mands in Basic without line num-
bers. We need some way of writing

IAN SHARPE
continues his
exploration into
the fascinating
world of turtle
graphics

Logo instructions which form a
program that can be saved and run
at a later date.

Logo doesn’t need line numbers
and wouldn’t understand them if
they were used. Programs in Logo
are built up from procedures, which
are lists of commands similar to the
ones we have used to draw squares
and triangles.

The difference is that they are
grouped together under a name
which can be used to recall and run
them any number of times once the
procedure has been defined.

Let’s see how this works by using
last month’s square as an example.
Thinking back to our friend from
last month, if he also had a poor
memory you might want to write
the instructions down on a sheet of

Now we re shaping up

paper with “how to walk in a
square” at the top.

Whenever he wanted towalk ina
square he could follow the instruc-
tions without youhavingtobe there
to tell him how to do it. It’s just the
same with Logo and a procedure is
like the sheet of paper. We'll call
ours box.

First type:
ts

which expands the text window
to cover the whole screen. This is
more convenient for writing proce-
dure.

Now type:
tobox

and press Return/Enter. Notice
how the? prompt has changed
into>. This means that Logo recog-
nises we are defining a procedure
and want to store the commands
rather than execute them straight
away.

Enter the list of instructions we
used last time:

repeat 4 [fd 100 rt 90]
and finish off with:

end

Computing With The Amstrad — December1987 15

This means you have completed
the definition of box and Logo will
tell you so with the message “box
defined”.

Logo is an extensible language,
meaning that when you define a,
procedure such as box you have
added a new command to the lan-
guage. Instructions that are built
in, like fd and rt are know as primi-
tives and from now on box will be
treated just like any other.

If you clear the screen and enter
the name of the procedure:

cs
box

The interpreter will match up
the name with the list of stored in-
structions and use the turtle to
draw a square.

When writing a program it’s of-
ten handy to have a procedure
which draws a box. It can form a
border round text and is a useful
building block when drawing more
complex pictures. The procedure
we have just defined is the sort of
thing we need but it’s a bit re-
stricted. The only type of box it will
draw is a square of fixed size.

We could define lots of proce-
dures for different sizes and shapes
of box but that would be terribly
long—winded. As you might expect
with such a friendly language, Logo
has a special feature to help us out.
We can define box in such a way
that we can call it to draw a rec-
tangle and say how big we want the
sides to be.

Here’s how it’s done:

to box :hs :vs

repeat 2 [fd :vsrt 90 fd : hs
rt 90 1]

end

Figure I: Can
you produce
these shapes?

The :hs and :vs on the first line of
box are the names of variables.
When used with a colon on the first
line of the definition they will tell
Logo that whenever box is used two
numbers should follow that say how
big the horizontal and vertical sides
are going to be. Logo puts the
numbers in the variables hs and vs.

You can test it with:
cs
box 50 100

which puts the numbers 50 and
100 in the variables.

For those of you who are new to
computing, let alone Logo, vari-
ables are used in some form in all
computer languages and if you can
remember algebra from school you
probably understand them already.

A variable is a storage compart-
ment, referred to by a name which
you choose, used to hold numbers or
letters which can be retrieved later
in a program.

When the second line of the pro-
cedure is executed the repeat 2
statement says that whatever is
inside the following square brack-
etshastobe donetwice. Thefirstin-
struction is to send the turtle for-
ward, but instead of the definite

number of units we’ve been using so
far we see the variable name vs
preceded by a colon.

Remember, putting a colon in
front of a variable name outputs the
value held in the variable, so Logo
sees the expression:vs as the value
held in vs — in this case 50.

Similarly :hs evaluates to the
value stored in hs which we have
specified as 100. With that in mind
you should be able to work out what
box 50 100 does without typing it
in, but I suggest that you do just to
make sure you were right.

This way of giving a procedure
some values to work with is known
as passing parameters. We can
apply it to other shapes which can
then be used to build up more com-
plicated pictures.

For instance to draw an equilat-
eral triangle of any size we can

Figure II1: More homework

16 Computing With The Amstrad —

December 1987

define a procedure triangle using:

totriangle :sz
repeat 3 [fd :sz rt 120]
end

and draw different sizes of tri-
angle with commands like:

cs
triangle 50

and:

cs
triangle 100

The procedures we have defined
so far illustrate an important point
in turtle graphics. Have younoticed
how the turtle always ends up
pointing the way it started?

To do this all the angles it turned
through must have added up to 360
degrees. So to work out the angle
needed in box which has four sides
we calculate 360/4 which is 90 de-
grees. A triangle has three sides so
360/3 gives us 120 degrees.

This idea holds true in any situ-
ation where you want to turn
through an angle in more than one
step — divide the total angle by the
number of steps.

The shapes in Figure I were
drawn with similar procedures and
only required the length of a side to
be passed as a parameter.

Can you work out how to define
and use them to help construct

something like the picture in Fig-
ure II?

You’ll need to use the pu and pd
instructions to move the turtle
without drawing lines. Try to imag-
ine a person carrying a large pen
and walking about on a big piece of
paper. How would you tell him to
draw the picture? If you can work
that out you are well on the way
towards telling the turtle how to do
it.

¢ Next month we’ll develop more
useful graphics procedures and
start working towards a simple
sketch pad program. We'll also
start using the save and load com-
mands so that you can keep a per-
manent record of your procedures.

 This is how to make a working

Logo disc. It’s always better to work

from a copy rather than the master
disc in case you accidentally lose or
corrupt zmportant files.

| Installing CP/M 2.2 Logo on
| the CPC464+DD1/CPC664
» Putside 1 of your system discin
the drive and type:
iCPM
* When the A> prompt appears
type:
DISCCOPY

~ ®* When prompted for the source

discinsert side 2 of your system disc
(Logo).

* When asked for the destination
disc insert your working Logo disc.

* After the copy is complete reset
your machine, put your new Logo
disc in the drive and type:

iCPM

* Logo will be loaded automati-
cally.

‘side 1 of your master disc.

Installing CP/M + Logo on
the CPC6128 '

* Put side 1 of your CP/M disc in
the drive and type:

iCPM

* When the A> prompt appears,

type: :
DISCKIT3

®* When the menu appears, select
the format option.

* Select system format, insert
your Logo disc and follow the
prompts.

~ * Exit back to CPM and insert

¢ Type PIP and wait for the *
prompt.
* Type:

b:a:*.ems
b:a:submit.com

* When you are asked for the disc
for B, put in your Logo disc. Disc for

Arefers to the dlsc you are copying :
from -

» When you are asked for thedisc
for B, put in your Logo disc. Disc for
A refers to the disc you are copymg'
from. - S

sInsert 51de 3 of yourmaster disc
(DR.LOGO & HELP).

* Type the following, inserting
your working Logo disc when asked
for Disc for B =

b:=a.setkeys.'cbm
b:=a:logo3.com
b:=a:keys.drl i
b‘proﬁle.sub-a.a.logo.‘i.sub

working Logo disc in the drive and:"‘
CAT it. You should see the follow-_
ing files:

C10CPM3.EMS LOGO.COM
SETKEYS.COMKEYS.DRL
PROFILE.SUB SUBMIT.COM

* Type iCPM and Logo wzll be’
loaded automatzcally S

Computing With The Amstrad — December1987 17

This month we’ll go into IF a
little more deeply, seeinghow it can
be used with strings and joint com-
parisons.

Have you noticed how relentless
the Amstrad is? It starts at the
beginning of a program and works
through it line by line, obeying each
and every line. A FOR ... NEXT or
WHILE ... WEND loop might send
it round the houses but each line in
a program is obeyed at least once.

However sometimes you don’t
want this to happen. It might be
that you only want a line to be
obeyed if a certain condition is true.
A bank manager might want his
computer totell him if a customeris
overdrawn. But he only wants the
line:

PRINT account$; “is in the red”

obeyed when account$ is in the
red. If not then that line is not to be
obeyed.

PETE BIBBY

Operator Meaning

= equal to

> greater than

< less than

>= greater than or equal to
<= less than or equal to

< not equal to

Figure I: Comparative operators

10 REM Program |

2@ FOR loop=1 TO 19

30 READ number

49 IF number=5 THEN PRINT
number “is number”

5@ NEXT loop

60 DATA 9,1,2,34

70 DATA 5,6,7,8,9

Program 1

Locomotive Basic allows for this
type of thing by having the IF ...
THEN statement. It works along
the lines of:

IF conditionis true THEN do something

evaluating the condition and if -
and only if — the condition is found
to be true, obeying the rest of the
line after the THEN. If the condi-
tion isn’t true then all the code after
the THEN is ignored.

Figure I shows the comparisons
that can be used and Program I
shows the first of them in action.

The comparison’s made in line
40. Here the contents of a variable,
number, are compared with the
number 5. It’s easy to see that if
number holds 5 then the condition
is true (5=5) and the rest of the line
is obeyed.

Notice that as the FOR ... NEXT
loop is obeyed, 10 numbers are read
into number. However it’s only
when the condition is true (when
number=5) that the message is
printed. The line is only obeyed
when conditions are right.

Following close on the compara-

18 Computing With The Amstrad — December 1987

tive operator = (as such things are
known),is <>. Thisis the opposite of
= and means, unsurprisingly, “is
not equal to”. Try changing line 40
of Program I to:

40 IF number <> 5 THEN PRINT
number; “is notfive”

and you’ll see what it does. Now
the condition is true whenever
numberisnot equal to 5. When this
isthe case the messageis displayed.
When number does hold 5 then the
condition can’t be true (how can you
have 5 not equal to 5?) and the rest
of the line is ignored. So you get a
message for every value of number
but 5.

The next operator we’ll meet is <
which means “less than”. Again,
alter thelinein ProgramI, thistime
to:

40 IF number < 5 THEN PRINT num
ba;ll

is less than 5”

and see what happens. Now the
rest of the line after the THEN is
only obeyed when number holds a
value less than 5. The result is that
the program gives messages for
values of 0 to 4 none after that.

Don’t get the “less than” operator
<, confused with the “less than or
equal to” operator <=. They’re sub-
tly different in their effect. <= also
allows the case where number is
equalto as well asless than 5. If you
try:

49 If number <= 5 THEN PRINT num
ber;” is either less than 5 or equal
to5”

in Program I you’ll see that now
you get the numbers 0 to 5 dis-
played.

Since we’ve had a “less than” op-
erator it seems logical that there
should be a “greater than” operator.
There is —it’s >. Using:

49 IF number > 5 THEN PRINT num
ber;” is greater than 5”

will give you 6,7,8,9 as your
reward, all the values of number
that are greater than 5.

Not surprisingly there’s also
“greater than or equal to” operator.
It's >=. A quick alteration to Pro-
gram I in the form of:

40 IF number >= 5 THEN PRINT
number;“is either greater than 5 or
equal to 5”

will show you what it does. Now
the output is 5,6,7,8,9. The “equal
to” part of the condition has ac-
cepted the case where number is 5.

Try altering the comparisons
made in line 40, using other values
than 5. Also, you can change the
numbers in the data lines and see
what happens. Be sure to note the
difference between < and <=,>
and>=. It may seem small but can
be a potent force for program,
faults.

Notice that the operators are in
opposites. If something is <= to
somethingelse, it can’t be > than it.
That is, if number is less than or
equal to 5, say 4, then it obviously
isn’t greater than 5. Similarly if it’s
greater than or equal to 5, say 6,
then it can’t be less than 5. The
conditions are mutually exclusive.

Don’t worry if this seems a bit
academic—when you come to use IF
... THEN to get your programs to
take decisions, you'll understand.

19 REM Program li L
20 PRINT “Give me a number” :
30 INPUT number
40 If number<5 GOTO 70 _
50 PRINT number “is greater than or
~equalto5”

60 GOTO 80

_ 7@ PRINT number “is less than 5”
80 END

Program II

In the above program we’ve just
compared the value in a variable
with a number. We could also com-
pare two variables or an expression
such as:

IF oneVariable > twoVariable THEN ...
IF 2*one Variable < 3*twoVariable
THEN ...

Also the examples chosen have
used the IF ... THEN conditional
statement with just a PRINT after
the THEN. There can in fact be all
kinds of keywords after the THEN
such as LET or CLS.

You can even send the program
hurtling all over the place. This is
done using that black sheep of the
keyword family. GOTO. If you use
GOTO with an IF, you don’t need to
usethe THEN, though the Amstrad
won’t be upset if you do. Program II
shows IF ... GOTO in action.

Notice the horrible way you have
to have another GOTO in line 60 to
stop things clashing. Try leaving it
out and see what happens.

The END of line 80 just stops the
micro going any further and gives
line 60’s GOTO somewhere to aim.

Whichever way they are used, IF
statements are extremely impor-
tant. They allow our programs to
make choices, sometimes perform-
ing a line, sometimes not. This

Computing With The Amstrad — December1987 19

makes them much more flexible
and so more useful.

Now that we're familiar with IFs
and conditions again, let’s go
deeper. Often we don’t want to test
for just one condition, we want to
test for two. For example, looking at
Program I again, we may want a
number that lies between 4 and 7.
Here there are two conditions to be
considered. We want number to be
greater than 3 and at the same time
number has to be less than 8. If you
use:

40 IF number>3 AND number <8 THEN
PRINT number

you’ll see how thisis done. All we've
done is to join our two conditions
with a logical operator, AND. Now
both conditions have to be true be-
fore the code after the THEN is
obeyed. Theresultisthat4,5, 6 and
7 are returned.

Try the following line:

4@ IF number>=3 AND number <=8
THEN PRINT number

Can you see how both conditions
combine to give 3, 4, 5, 6, 7 and 8?

While we often want two condi-
tions both to be true before we go on
to the bit after the THEN, some-
times we want the line to be obeyed
if one or other or both of two condi-
tions are true. We may want to go
out if it’s sunny or dry or both.

Here only one of the conditions
has to be true for us to be out the
door. The only way we stay in is if
both conditions are false, that is, if
it’s both wet and, at the same time,
dark.

There’s a logical operator to deal
with this, the aptly named OR. You
can see it in action with:

4@ IF number <3 OR number >7 THEN
PRINT number

Here the line is obeyed if number
is less than 3 or greater than 7. The
resultisthat 0,1, 2,8 and 9 appear.

Can you explain why:

40 IF number <=3 OR number >=7
THEN PRINT number

gives, 0, 1, 2, 3, 7, 8 and 9? The
addition of the equals sign means
that 3 and 7 come in from the cold.

As with single comparisons, try
changing Program I to try different
combinations of conditions acting
on different numbers. And try to
predict what the outcome will be
before you run the program.

It’s all too easy to use <= instead
of <, or AND for OR, allowing unex-
pected values to slip through the
condition. In small programs like
Program I this is no problem but in
more realistic programs all hell can
break loose. And it can be difficult to
trace the mistake, so be warned.

As well as AND and OR you can
use another logical operator with
the conditions of an IF. This is the
NOT operator which negates the
condition. It’s easier to use in prac-
tice than it is to explain, though at
times it needs care. If you change
line 40 of our long-suffering Pro-
gram [to:

IF NOT number=5 THEN PRINT num
ber

you'll see how the output is the
reverse of the previous. This is to be
expected as the condition is now
true when number is NOT 5.

Hencethe part afterthe THEN is
obeyed when number is 0,1 and so
on. Infact every time except when it

is 5. Try using NOT on some of the
earlier conditions we tested in Pro-
gram I and see what effect it has on
the output. You'll see that it re-
verses it.

But beware when you come to
dealing with joint conditions. See if
you can tell the difference between:

4@ IF NOT (number >=3 AND number
<=8) THEN PRINT number

and:

40 IF NOT number >=3 AND number
<=8 THEN PRINT number

The one gives 0, 1, 2, 9, the sec-
ond just 0, 1 and 2. In the earlier
case the brackets around the two
ANDed conditions ensure that the
NOT applies to them both.

In the second, the NOT only
applies to the first condition. The
second one is left unNOTted (f
there’s such a word!) and so won't
allow the 9 tobe printed becauseit’s
greater than 8.

The difference is subtle but can
be important. I avoid NOTs like the
plague and use another pair of con-
ditions to achieve the same effect.

Just as we can compare numbers
and numeric variables, so we can
compare strings. This is possible
because, as you know, computers
work with numbers. Micros store
strings as numbers and when we
ask our Amstrad to compare, say A
with B it compares the numbers it
holds for the strings. These num-
bers are the Ascii codes we met in
the September 1985 issue.

Happily, we don’t have to be con-
cerned with the numbers, we can
just use the strings with the com-

Continued on page 24

20 Computing With The Amstrad — December 1987

_. I.
.- -
-
I-.

Take A PEEK,
double it ... And

vAke A DEEK

On numerous occasions we
need to peek into the Amstrad’s
memory, for instance to exam-
ine certain values in the system
variables area.

Values less than 256 can be
stored away in one physical mem-
ory location — a byte. An example of
this is the TAB size which we can
alter using the command ZONE. Its
default value is 13 and this number
can be found at &AE79 on the
CPC464.

Most of the system variables
occupy two or more memory loca-
tions thus allowing larger values to
be stored such as table addresses,
pointers and so on.

It is common practice for com-
puters based on the Z80 to store
these 16 bit numbers in a reversed
fashion. The first byte holds the
least significant part of the number
and the most significant part moves
into the second byte. The following
command retrieves that two byte
value:

PATRICK de
GEEST introduces
the DEEK
command, and
shows how it
creates access to
memory

PRINT PEEK(first_byte) + 256
* PEEK(second_byte)

Forinstance the highest memory
location available to Basic,
HIMEM, is stored at locations
&AE7B and &AE7C. It can be
found by providing the above com-
mand with the right address:

PRINT PEEK(&AE7B)+256*(&AE7C)

giving 42619 on my micro. Peek-

ing two consecutive bytes in ram or

rom in the fashion I've just de-
scribed is more commonly named a
double peek.

Some Basic implementations
have a double peek already in their
vocabulary list often abbreviated to
DEEK. A deek into memory always
returns a value between 0 and
65535, which is the maximum
number that can be stored in two
memory bytes.

Two bytesindeed allow for 65536
different bit configurations. It is
this missing command DEEK that
we are going to simulate using the
RSX extension facility which is
available via machine code.

One advantage is certainly the
ease with which we can have access
tothe memory and at the same time
assign a variable with the double
peeked value, We can design the
RSX syntax as follows:

num%=9
IDEEK, address,@num%

Computing With The Amstrad — December1987 21

Its function is to double peek into
address and address +1 and to store
the value in the integer variable
num%. The exact location of this
variable is passed as a parameter
using @

The variable num% must be as-
signed a value at least once some-
where in the program otherwise
Basic isn’t aware of its existence
and won’t be able to pass its exact
location in memory as a parameter.
Basic informs you of this eventual-
ity with the error message “Im-
proper argument”.

Integer variables like num% are
convenient since these also take
just two bytes to store their values.

Note that all parameters passed
to RSXs are converted into two byte
values and if necessary Basic
rounds numbers off. If pi were to be
passed our machine code routine
would pick up the number 3 in the
low byte and 0 in the high byte.

But how does our routine know
where to look for these parameter
values?

This is very simple. During the
interpretation by Basic of the RSX
command the register pair IX will
be initialised with the memory
address of a parameter block. While
Basic digests these parameters
from left to right it pushes the val-
ues on the stack. As a consequence
the firstitemin this table willbe the
last parameter in the RSX com-
mand.

Using this index register makes
it easy to pickup the parameter val-
ues. The logic behind it can be visu-
alised as follows:

IDEEK, (IX+n) (IX+(n-1))...(X+2)

A -
?dr%: ngg 10 REM PROGRAM 1
1d hl. Buffer 20 MEMORY &9FFF:count =45
ip &BCD1 :log RSX 33 FOR x=1TO count
Table: defw Syntax 40 READ b$ -
ip RSX 50 POKE &9FFF+x,VAL (“&"+b$)
Buffer: defs 4 60 Niﬂ ;A%z
Syntax: defm “DEE” 79C
defb“K”+&80 80 END
S D
100 DATA
. ; ? 3 3) 3 s
?e?)r(mchz s Palmen AQ,C3,D1,BC,12,A0,C3
i 110 DATA 17,A0,00,00,00
f) ;hl: 3 3)) 3
> ?(23?3’ - 00,44,45,45,CB,00
ddli 120 REM *** Machine code ***
I 3 ; =N °/ d
|::(('|§:1g)) =N acdr 130 DATA FE,02,C0,DD,66,
Id a,(hl) ; peek 23,0D,6E,2,0D,56,01
Id (de),a : store 140 DATA DD,5E,00,7E,12,
ifcda 13,23,7E,12,C9
inc hi 150 REM
Id a,(hl) ; peek 160 use: IDEEK, address,
Id (de),a ; store @num%
ret; end 170 REM -
Listing I Program I

Here’s how to set up the IDEEK
command in machine mode:

The first part of the program sets
up the RSX and the second part is
our machine code routine itself.

To introduce this RSX to the
firmware we execute a CALL
&AOOO just once. From the mo-
ment the ready prompt reappears
we have the facility to use IDEEK.

Those without an assembler
should enter and run Program I.

Now it is time to experiment.
Let’s poke a number into memory
say 5156, and see if we can double
peek it back. Separated into low
and high byte we have 5156=36 +
256 x 20 so enter:

POKE &A101,20
POKE &A104,36

And now the final test:

Num%=0
IDEEK,&A100,@num%
PRINT num%

which gives 5156.

Now let’s try a larger number for
instance 55156, 116 + 215 x 256:

POKE &A190@,116
POKE &A101,215
IDEEK, &A19d, @num%
PRINT num%

This gives —10380 instead of the
expected 551561.

22 Computing With The Amstrad — December 1987

The cause has absolutely noth-
ing to do with our RSX routine.
Fallingback on the normal deeking
method doesn’t help solve the prob-
lem either as a quick verification
proves:

num%=PEEK(&A10Q)+256*
PEEK(&A101)
PRINT num%

The result in this case is not an
erroneous number but an “Over-
flow” error message.

The reason behind these anoma-
lies lies in the fact that Locomotive
Basic treats its integers as signed
integers whereas we expected them
to be unsigned. What is the differ-
ence?

In two bytes the total number of
possible bit configurations is 65536
and when dealing with absolute
unsigned integers we consider the
range 0 to 65535 to be totally posi-
tive.

However, when speaking of
signed integers as Basic does, this
range of 65536 integers starts not
at 0 but at —32768 and ranges up to
32767. Advanced machine code pro-
grammers should immediately rec-
ognise the analogy with two’s com-
plement numbers.

The range of numbers is shifted
halfway down the scale so we can
work with negative numbers as
well.

As a consequence all numbers
greater than + 32767 and all num-
bers smaller than — 32768 are
forced to be of type real. But by
appending a % sign after the vari-
able name num. Basic was prohib-
ited from making the conversion

into a real number and all it could
do was print the error message.

If the % sign is left off then Basic
can execute the command:

num=PEEK (&A100) +
256*PEEK(&A101)
PRINT num

When this statement gives val-
ues above + 32767 we know for sure
that the variable num will be a real
since to handle larger numbers
Basic is obliged to leave the integer
framework.

It stems from the fact that using
variables of the default type Basic
automatically switches to real
number notation once the integer
limits become insufficient.

The main advantage of integer
notation is that these numbers are
readily available to be manipulated
by Basic. No preliminary conver-
sions are needed and everything is
very quickly processed.

That cannot be said when work-
ing with reals. Performing opera-
tions with reals involves much
more machine code compared with
integer operations and as a result
the execution time will signifi-
cantly increase.

Also important is that when the
variable has a ! sign to it, then even
when the value can be written as an
integer Basic nevertheless resorts
to reals. To see this demonstrated
enter:

POKE &A100,36

POKE &A101,20

num!=PEEK(&A100)+256*
PEEK(&A101)

PRINT num!

POKE &A100,116

POKE &A101,215

num!=PEEK(&A100)+256*PEEK
(&A101)

PRINT num!

The first number is again 5156
but this time we know its internal
formatis areal. The second number
nowis 55156 asrequired anditisno
more the signed integer equivalent
(-10380) and is also a real.

* Next month we’ll take a closer
look at the way reals are stored and
we’ll develop our simple DEEK
routines further.

Computing With The Amstrad — December1987 23

Machine Code

continued from page 10

300C 3EQA LD A,&QA
300E CD5ABB CALL CharOut
3911 3EQD LD A,&2D
3013 CDBB5A CALL CharOut

are just to print out a line feed
followed by a carriage return, en-
suring our lines are separate. Try
leaving either or both out and see
what happens. (Remember that
your jumps will have changed.)

Right, that’s plenty for one
month. TI'll leave you with two
things to ponder, though.

If we're simply obtaining the
value of B from C, why bother with
C at all? Actually, that's easy, but
it's the sort of daft thinking that can
occur to you after your mind's been
numbed by several hours of ma-
chine code programming.

My final poser is a little more
demanding. Try turning the tri-
angle upside down, with one aster-
isk at the top, and eight at the
bottom.

First Steps

Continued from page 21

And we can think of the < opera-
tor as meaning “comes before” and >
as meaning comes after. So compar-
ing strings you should see that:

a>1
a>A
a<Z
a>Z
1<9
<A
ab<ac
aa>aA

~ besbed
1251234

are all true.

You’ll notice that some of the
above are more than one character
long. To compare two strings the
Amstrad looks at the first charac-
ter. If these are the same then it
goes on to the next character, ifany.

Should there not be a next char-
acter, then the shorter string is
deemed the one that comes first.
Hence BAR comes before BARD. If
you think about it, this is the way
things are done in dictionaries and
other alphabetical lists.

Program III not only shows you
string comparisons in

10 REM Program Il

20 PRINT “Enter two strings”

30 INPUT first$,second$

40 IF firstS<second$ THEN PRINT first
$;“comes before”; second$

64 IF first$>second$ THEN PRINT first
$;“comes after”; second$

Program II1

action, it also lets you explore
the way the Amstrad orders
strings. Play around with it until
you’ve grasped how it does it. And
then, if you're really keen to test
what you’ve learnt, try writing a
program that will take five strings
and display them in alphabetical
order.

¢ That should keep you busy until
next month when we see what ELSE
can come with IF.

cP A BF
SOP B B8
P O B9
CPD BA
CP. E BB
CP H BC
CP L BD
TableI: CPr

Christmas with the Amstrad. ..

The offices of Computing With the Amstrad will
be closed for the Christmas break from 23 December
and re-open on 11 January 1988 ... soooo, Happy
Christmas to all our dear readers, and enjoy our

final issue for 1987as you laze in the sun ...

24 Computing With The Amstrad —

December 1987

Mo

Since reviewing Shadows of Mordor,
the sequel to Lord of the Rings, | have
received a copy of the playing hints that
sometimes — though not often enough —
come with a review copy of a game.

Reading these shows where | went
wrong and also the degree of character
interaction needed to complete the
game.

Iam going to alterthe marks orcomments | made in my
review but would point out that in the documentation with
the sheet, it says that there are limited graphics in the
game.

This is something | didn’t see and didn’t know about
when | played it.

Graham Wheeler tells me that two adventures | hadn’t
heard of, Theseus and Nythyel, were written by Tony Col-
lins of the 50/50 club.

This is a business where ideas are sent to be coded
into adventures, marketed, and the proceeds split equally
between the programmer and the sender of the original
idea. This is a splendid idea and | would like Tony to send
in some of these games for review together with more
information about the club.

Glynn White, the winner of last year's competition to
provide the most maps and solutions, has sentinyet more
material. | shall be publishing some of it over the coming
months and would like to thank him for all his work.

Finally, before we look atthis month’s problems, I'd like
to apologise to readers who have written and haven’t had
areply.

| have been moving house and several answers to
letters have been delayed. It’s not easy to solve problems
when you don’t remember which packing case they’re in.

Geoff Parker is in difficulties with Leather Goddesses
of Phobos. To get anywhere with King Mitre and his

daughter, you need to take the
salesman’s machine and the untangling
cream to the throne room.

Put the cream in the machine and
start it, to make the untangling cream.
Cover the princess with it. Buying an
exit? Get the penguins to change the 10
marsmid coin. Movinginthe catacombs?
Read page 7 of the comic book.

Geoff would also like to know where he can get the
Invisiclue Books for Infocom games. I'm sorry | can'’t help.
Has any reader seen them?

Barry Spiers is stuck in three adventures. In Heroes of
Karn, he would like to know how to get the jade flower;
where to find Haldir; how to get up the broken stairs in the
plant room and how to kill the bat.

The answersin order are —drop the pillow and play the
flute; in the crypt; water the plant; tell Beren to kill the bat
with the falcon.

In Terrormolinos he wants to know how to save Ken at
the bullfight; and in Snowball, how to get through the
trapdoor.

Wave anunknotted hanky andtake the bullto the china
shop. There are several trapdoors in Snowball. I'm going
to assume you are talking of the one in the initial location.

In this case climb the coffin and go up.
V@UR PROBLEMS
// NSWERED |

David Roberts and Jonathan Hutchings are stuck at
the beginning of Seabase Delta. They have got the docu-
ments and travel pass and called the travel car but cannot
board.

Computing With The Amstrad — December1987 25

You must enter the car, wear the belt and insert the
card and the car will travel to the next station.

They have also asked me to publish a map of this ad-
venture so part one appears this month. Remember, if
there are any maps you want to see please let me know.

Graham Wheeler has written to help solve several
problems that have cropped up in previous months.

In Spytrek keep giving money to the tramp at the airport
untilyou get a key and anumbrella and then go to the Eiffel
Tower.

Here you can unlock the door which will automatically
light the staircase. Walk up and down the stairs until you
have lost enough weight to be able to float away in the
balloon.

lan Pullen has a problem with Castle Blackstar and
Graham writes: You have to be beside the weather vane
on the top of the castle. There is a secret passage leading
up from the other side of the mirrorin the Duke’s bedroom
—and you need the orb and the broomstick when you try
to fly. Saying ‘Abracadabra’, going up and touching the
stars will transport you to a passage in the realm of
Artemis.

7777777
7 //C/Z/ é///////////// 7

AN

BelEl .

b= s 7N 2 Y| Zz7) v /'{’7//
i

Last month | said that some of the smaller software
houses seemed to feel that reviewers are biased in favour
of glossier packages produced by larger companies.

Personally | don't believe this and, it’s not true in my
case.

Because of this complaint, I'm starting a new sectionin
my column. If anyone has any comments or complaints
write in and, where space permits, | will print them.

Message from Andromeda — A solution by
Anthony Robinson

Read the message and reply. When the ship lands,
open the airlock, leave the ship and close the airlock. Go
to the workshop, take the knife, then go to the antecham-
ber and put on the gloves.

Now go to the red room for the rod, and the control
room for the detonator. In the mirrored room, point the rod
at the plate and drop it. You can now go South and rotate
and take the sphere. Inthe blue room, drop the sphere on
the pedestal and rotate it.

Objects
Key Use to unlock the wooden
door o o
Large stone Has a trapdoor underneath
Match Strike, then throw at gun

powder

Plank Put it across the pit
Rod Put it in the hole
Sextant A red herring
Shoe A red herring
Skull A red herring
Spear Throw this at the octopus
Watch Give this to the cannibals

Visit the store room for the explosives and place them
inthe eastern end of the cavern. Go to the western end of
the cavern and press the detonator button then drop it.

Get the space axe fromthe hall of the ancients and the
fungus from the plateau before going to the sloping corri-
dor where you throw the fungus at the slug.

In the torture chamber, cut the ropes, drop the knife
andtake the stones. Atthe crystal bridge, throw the stones
at the creature then go to the commander’s chamber and
kill the commander with crocodile.

26 Computing With The Amstrad — December1987

~Ne. y/Stor,

A’ solution by /
i /

7
at’ Winstanley,

:

Part One

From the clearing go NE, E, Look, take Auryn, E,E,E,
take Artax, N,W,NW (Artax dies in the swamps of sad-
ness), NW,S,S,S,E,E,E,SW, take food, eat food, take
leather, NE,W,W,W,S,SW,W,N, take branch,
S,E,N,NE,W,SW, light branch.

Now go quickly to the foothills before the branch burns
out, NE,E,E,E,E,E,E, down, light bushes, down, take box,
N,SW,W,N,W,W,W,SE,W,SW,N, take stone, S, Take
horn, W,SE, blow horn, take Falkor. Then say to Falkor ‘Fly
South’, E, up, down, S,E, drop box, smash box, look, take
fragments, S,S, (Wait until eyes blink and then S), (Go N
and S again while you are waiting). Follow screeninstruc-
tions to load part two.

Part Two

You start deep in the forest to the West of Spook city.
Go E,N, drop fragment, drop leather, drop horn, drop
stone, E, take glow—globe, W,N, take apple, S, drop apple,
N,W, take rope, E,E,NE, take book, read book, drop book,
W, remove planks, down, SE,W.

Tie rope, down, down, take pouch, take coin, drop
pouch, down, up, E,S,E, take tin, W, take knife, N,E,E,N,
open tin, drop tin, N, take rusty key, S,SE,SW, down, cut
web, drop knife, W,SW,E.

Unlock cell, E, drop key, W,W, drop coin, W,W, drop
coin, W, take gold key, E,E,S,N,E, down, up, E,NW, up,
S,S, take apple eat apple, take horn, S, blow horn, E, take
Auryn, W, take Falkor, say to Falkor ‘Fly East’. Follow
screen instructions to load part three.

Part three

You start on a floating asteroid west of the ivory tower.
To finish the game you need to find your way through a
maze to the childlike empress so go; E,N, unlock door,
E,E, up, NW, up, W,W,E,S,S,N,W,up,W,E,E,E,E,up,E,
say please,E,E and you will meet her.

Final message

“Despite the Destruction of Fantasia everything here
seems normal and tranquil. The empress congratulates
you on surviving the Nothing and succeedingin your quest
to return Auryn to her, but most of all, for making Bastian
believe in Fantasia.

Now that someone from the real world believes in it,
Fantasia can be restored”.

Bastien, Atreyu and Falkor set off to begin rebuilding
Fantasia.

.

Simon Druce wants help with Doomdark’s Revenge
and the Vera Cruz Affair. If any reader would like to make
up a hint sheet | will print it.

Simon has asked how to get the coin in the large
cavern in Bored of the Rings part two. Unfortunately, my
maps and solutions to this game have still not turned up
since moving house. Can anyone help?

Debby Howard is going round in circles trying to find
her first puzzle in Robin of Sherlock. Can someone help
her get started?

S. Saltmarsh wants help with Dun Durach. He has ob-
tained the following scripts; Gods see all, Art in order,
Skars a pearl and Rats in vain.

He wants to know what they mean and what he should
do with them. He also needs to find out how to open the
locked doors in Claw Lane and in the jail. | didn't find this
adventure easy and would welcome any reader’s help.

J.Graham is having difficulties with an adventure that
| haven't heard of before — The Curse of Sherwood.

He has giventhe glass and fangs to the witch butkeeps
sinking in the swamp. He says he has tried every possible
exit. Can anyone help him and give me some information
about this game?

Computing With The Amstrad — December1987 27

Atlantis, cassette only

An evil lord has plunged the
landinto darkness and yourtaskin
this GAC’d graphic adventure is to
restore the magic amethyst to the
alchemist and thereby save the
land from certain destruction.

.s

You start in a dungeon, men- | .

As well as puns and cliched
situations, the program takes a
few gentle swipes at the industry
in general. For instance, in the
hideout of the Infogong gang, a
card is pinned to the wall that
reads ‘Keep it coming!’

The program is written for all

Bl gan L ei.‘no ek gl WarE L ay
oo ja,n‘s wvut e smitortalile call
#wit M’ma s LS ke ar e
Gt asrigese . B gt v whime, dookiog

sausty Like ausiohrrey }7/{%/1@, .
B il o

aced by what seems to be goose- ;, .
berry jam. Like me you will proba- d"ar
bly fail at first to realise that move-

CPC machines and though sup-
plied on tape, is readily transfer-
rable to disc and also features a

i, Mg i ABE G
%W ’&‘W@mwg .. B

ment is possible — but the direc-

tions are not displayed, It took me
ten minutes of attempting various
silly things with the jam before |
realised this.

Exploring your surroundings reveals that you are
locked in an underground dungeon complex. The door to
the outside world is locked.

You soon acquire a loincloth and you may need to
cover your modesty with this if you want to meet Gollum.
He obviously hasn’t yet met Bilbo and you soon obtain an-
other object. Incidentally, try skinny dipping first!

Searching further reveals akey. Unfortunately, itis not
the one to the door but will allow you to gain access to an
objectthat, if treated improperly, will lead you to the correct
key.

You can now escape to the main body of the adven-
ture. All you have to do now, is find the amethyst and give
it to the alchemist.

I love this game and it seems to have everything going
forit. The graphics are quite good, complementing the at-
mosphere, and just the right balance between humourand
difficulty has been achieved.

It's not difficult to complete — many of the actions are
intended to amuse, not to serve as obstacles. It’s been
written to entertain not baffle.

save game option —two features
that make my life a lot easier and
are much appreciated.

The only disappointment is that players with roms
fitted that take up memory space will have to remove their
rom board or the game will not run.

Overall, I find it nearimpossible to fault this game, and
budgetpriced, it offers marvellous value for money. Highly
recommended.

Presentation 90%

Just a simple cassette inlay — but then, what do you
_expect for the price? ;

Atmosphere 90% : -
_It's hard to combine humour and atmosphere but
they’ve done it here. ‘ -
_Frustration factor 50%

Not many problems. But if there were more, there
would be less humour and the game would be less
entertaining. o -

Value for money 100%
Exceptional.

Overall 90% _
Can you afford not to get it?

28 Computing With The Amstrad — December1987

Infogrames, cassette only

This is a graphics adventure based on the work of the
French cartoonist, Francois Bourgeon and concerns the
trials and tribulations of two men and women on the eve of
the French Revolution in the 18th century.

Isa, a countess cheated out of her title and lands,
meets and falls in love with Hoel, a young Breton sailor.
They are captured by the British. Hoel is taken as a
prisoner of war and Isa takes a job in Portsmouth as a
French tutor.

She befriends Mary, who is having an affair with one of
Hoel's guards and the three of them hatch a plan to help
Hoel escape. The story begins with this rescue attempt
and it is up to your skill to determine the outcome.

The game is not an adventure in the accepted sense.
Instead, the screen is split into four main areas each of
which fulfils a separate purpose.

The top half is used to display the graphics —one major
picture for the 10 episodes that make up the game. As
actions are undertaken, small windows open up to depict
the scene and the results.

The graphics are very good —
better.

though | have seen

The lower halfis splitinto three sections depicting: The
character currently selected, his or her comments, a list of
the choices available and two bars that enable you to
change character or choice.

There is no text input — you use the cursor keys or
joystick to select the section to update the spacebar to
confirm that choice. The only other keys used are for
loading or saving the game play.

I found the game very uninteresting —based simply on
multiple choice, on much the same lines as the Archers
and Adrian Mole. The character set is virtually unreadable
and making sense out of what is taking place is itself an
adventure.

My main crib is that there is nudity in the program.
Although the actual on-screen representation is quite
tasteful, | strongly feel that there should be some warning
onthe packaging. My majorobjectionis the circumstances
under which it takes place. One of the women — Mary —
captured and under threat of a knife, is ordered to remove
her clothes.

Intoday’s climate, where offences against women are
ontheincrease, | find the sequence to be in bad taste and
offensive. In the cinema the package would carry, at the
least, a ‘15’ certificate. The situation could have been
avoided and certainly isn’t justified.

Having climbed down from my soapbox, | have to
admit that | can't really find a lot to recommend in this
program.

| have never seen Bourgeon’s work so | am unable to
make comparisons. All | can say is that the graphics are
very good.

Presentation 20%

A piece of foam rubber, a small, inadequ’ate booklet and
two cassettes.

Atmosphere 60%

Good, because of the high standard of the graphics, If |
had been able to read the text my mark might have been
higher. :

Frustration factor 20%

Very. Mainly because | couldn’'t read what was happen-
ing.
Value for money 10%

Despite there being 10 different episodes, (each of
which only takes about 10 minutes to play anyway), itis
vastly overpriced.

30%

Should you buy it? If you like pretty puctures yes. If you
like adventures — this isn’t one.

Overall

Computing With The Amstrad — December1987 29

Infocom,disc

You always thought Tamara was a ro-
mantic, and your suspicions are confirmed
when you receive a letter from hertelling you
that she is engaged to marry Lord Jack
Tresyllian, the owner of a Cornish castle.

You are amused at first and, of course,
very happy for her, but as the letter contin-
ues, being the great American detective that
you are, your suspicions are aroused.
Tamara is very perceptive about people and
the house guests seem to be giving her
qualms. When she mentions the castle ghost
andthe factthat Jack’s last girlfriend, Deirdre
Hallamdrowned herselfinthe castle well you
start to worry.

A few days later a second, hysterical
letter arrives. Tamara has seen the ghost
and it has tried to kill her! Not only that,
several people who have seen the ghost re-

cently, have said that it looks like Deirdre. You immediately take a flight and arrive at the castle the same
Couldthe ghost be tryingtokillherandcould gy ening. After reassuring Tamara that you have read her letter you are
you come to England anddiscoverthetruth? tayen in to meet the other house guests. You are then shown to your
room and this is an ideal opportunity to question the servant that ac-
companies you. You can now explore your own room and those of the
other guests before going down to dinner and some very interesting
conversation.

I’'m not going to give too much away about this one. It’s classed at
an introductory level and doesn’t really need any hints from me — it
gives plenty of its own.

Yourtaskis to solve the riddles
and clues to discover who is trying
to kill Tamara and why. There is
also atreasure to be found to finish
the game.

There are four different vari-
ations each with a different culprit,
motive and treasure. Your play is
dependent on the answer to a
question at the start of the game,
“What is your favourite colour?”
Answering red, blue, yellow or
green determines the scenario.

UTRALNIER]

Ly

ko
!

i

Continues page 35

30 Computing With The Amstrad — December1987

IREN
OFTWARE

DISCOLOGY new DISCOLOGY

This is the ultimate in disc utilities. Discology consists of 3 programs, a disc editor, a disc explorer and a
disc copier.
The Copier ‘s AN
. : : : : ey
3:1 L;:nu;:reycg ueoAnnglsti?a %ress Discology really is the most powerful utility ever “the copier is easily the most powerful for
* Makes full use of all 128K on a 6128. "illhlfe:tsm:;l:ag asition by doing a better
* Highly intelligent, compresses data allowing whole discs to be copied in one go. b and ks Z P more 10 off '8 -~
* Full file copier, copy multiple files in one go. Will cope with files of any length. J b Astrad Ae;ion Oct 87
* Copies files from disc to tape. X DISC UTILITY PACKAGE

TheEditor
* Edit any sector, including funny formatted sectors J“—_'me,

* Display in Z80 disassembly, basic listing, hex, ASCII, binary, octal & decimal l CPC 464 /664 /6128

* Search disc for a given string

* Dump page to printer .) Discology makescomprehensive use of pulldown menus andisa

* Built in full floating point calculator, hex to decimal conversion etc superb addition to any discownerssoftware collection. Discology

* Exceptionally easy to use makesextensiveuseofall 128Kona6128and all 64K on 2464. This
TheExplorer 100% machine codeprogram offerseverything you could dream of
* A new concept in disc utilities plusmore.

* Graphically maps discs and files

* Shows how many sectors on each track and displays on which sectors files are
stored.

* Displays full sector information and file information.

New x5k ULTRASOUND 55 new

The complete sound package for your Amstrad

Ultrasound is a unique suite of 4 programs (plus demos) which will enhance and increase the potential of your computer.

Ultrasound will allow you to digitise about 1 minute of sound without the need for any additional hardware on a 464 (664 & 6128 owners will need a standard
cassette recorder) and edit and replay the sound. The sound can be added to your basic or machine code programs.

Synthesoft will tum your CPC keyboard into an electronic synthesisor. Giving you full control over your composition, you can alter the vibrato, octave, sound,
and volume. The facility to record and playback your tune is also available.

Soundsoft gives you the facility to quickly and easily create sound effects by directly accessing the sound processor (AY-3-8912) in your computer. These effects
can be added to your own programs.

Softtalk will allow you to give your computer a personality. Softtalk will allow your computer to talk to you. Text typed in to the keyboard can be spoken clearly
without any additional hardware. Speech can be added to your basic or machine code program easily with the usc of new RSX commands.

EPROM
PROGRAMMER

At last a low cost RELIABLE eprom blower is available for your Amstrad
CPC. Contained in a smart case with separate power supply, this unit will
enable you to read roms into memory, edit them and blow them onto blank
21v 2764 or 27128 eproms. A ZIF socket allows easy insertion/removal of
roms and a through connector allows other add-ons to be attached at the
same time. The 100% machine code software (which also run from ROM)
allows basic programs to put on and run from a rom and offers full verifica-
tion, blank checking and a reliable programming option.

DISCOVERY PLUS

Theultimate tape todisctransfer program

"Discovery Plus must be the most advanced and probably most efficient
tape to tape disc transfer utility to date” Amstrad Action, December 1986.
This program will transfer more games to disc than any other transfer
program. The first person who can prove otherwise will receive twice his
money back!!

Discovery Plus consists of 4 easy to use programs that together will transfer
an extremely high proportion of your software onto disc.

Also includes details on how to transfer over 100 games.

Silver Screwdriver Award Amtix! January 1987.

Discovery Plusnowincorporates Splock TransII

PRINTMASTER

PRINTMASTER isprobably the most useful program thatany printer
usercanbuy. JUSTLOOKATITS COMPREHENSIVELIST BELOW

* Comes complete with 20 fonts (typefaces)

* Prints any ASCII file (from Tasword/Protext) in a variety of fonts, sizes &
styles

* Adds NLQ (Near letter quality) printing to any printer

* Semi proportional spacing available

* Print large posters

* Font designer allows you to create your own fonts

* Dump screens to your printer in 16 shades of grey

* Very easy to use, full instructions and demo's included.

Noprinter should be without thisprogram!

CHERRY PAINT new

Another newadditiontoourrange, CHERRY PAINT isasuperb
mode2artpackage. CHERRY PAINT usesicons, pulldown menus
and windowstoprovideaneasytousedrawing packagefor your
Amstrad.

* Uses 640 * 400 pixels in Mode 2
* Full range of features and options
* Dump designs to your printer in 5 sizes

* Compatible with keyboard, joystick or AMX mouse
* Superb review in Amstrad Action

To order, please use the form on centre page

Greatest ever Savings on Software!!!

We've suspended our usual price list due to the currency fluctuations of the Aus-
tralian peso but we didn't want you to be disappointed over Christmas so... Don't
miss out on the bargain of this or any year! We've scooped the pool on over
$250,000 worth of software. O.K., we know some of them are oldies - but they're
all goldies! Hurry, some titles are in very short quantity.

Check these tapes out for value:-

1 HiSoft C 29.99 11 Decision Maker 19.99
2 Devpac Assembler 19.99 12 Invostat 9.99
3 Home Budget 19.99 13 Stockaid 9.99
4 HiSoft Pascal 19.99 14 Tascopy 14.99
5 Screen Designer 19.99 15 Tasprint 14.99
6 Mastercalc 19.99 16 Gamespack II 19.99
7 Masterfile 19.99 17 Halleys Comet 6.99
8 Star Watcher 19.99 18 Qabbalah 6.99
< Project Planner 19.99 19 Hardball 6.99
10 Entrepreneur 19.99 19A Frank Bruno's Boxing 6.99

And look at these prices for disk software, some at less than the cost of a
blank disk!:-

C= all CPC, 6=6128 only,P=PCW only,+=CP/M Plus only (i.e. 6128 & PCW)

C/P-20 Devpac 80 39.99 +-53 C-Basic 39.99
+-21 DR. Draw 39.99 P-54 Catalog 14.99
+-22 DR. Graph 39.99 P-55 Cambase 39.99
+-23 Nevada Fortran 39.99 P-56 Camsoft Invoicing 39.99
P-24 The Knife 14.99 P-57 Brainstorm 34.99
C-25 Devpac Assembler 24.99 C-58 Beach Head 9.99
C-26 HiSoft Pascal 24.99 C-59 Raid 9.99
C-27 Advanced Amsword 29.99 C-60 Grand Prix 2 9.99
C-28 Screen Designer 24.99 C-61 Glen Hoddle Soccer 9.99
C-29 Mastercalc 24.99 C-62 Assault on Port Stanley 9.99
C-30 Project Planner 24.99 C-63 Tank Commander 9:99
C-31 Entrepreneur 24.99 C-64 3D Boxing 9.99
C-32 Decision Maker 24.99 C-65 Cyrus Chess 9099
C-33 Tascopy 19.99 C-66 Macrocosmica 9.99
P-34 Tasword 8000 29.99 C-67 Doors Of Doom 9.99
P-35 Tasprint 8000 19.99 C-69 Golden Path 9.99
P-36 The Torch 14.99 C-70 Strangeloop 9.99
P-37 Write-Hand-Man 24.99 P-71 Cyrus II - PCW 14.99
6-38 Wordstar Deluxe 59.99 C-72 Hardball 9.99
P-39 Wordstar PCW 69.99 C73 Frank Bruno's Boxing 9.99
P-40 StarIndex 69.99 C-74 3D Stunt Rider 9.99
P-41 Polyprint 49.99 C-75 Roland In Space 9.99
P-42 Polytype 29.99 C-76 Braxx Bluff 9.99
+-43 Nevada Pilot 29.99 C-77 Alien (The original) 9.99
+-44 DR. MT-Pascal 39.99 C-78 Lords of Midnight 9.99
+-45 NewWord 2 59.99 C-79 Chemistry Revision 29.99
+-46 Nevada Basic 29.99 C-80 Physics Revision 29.99
+-47 Multiplan 59.99 Cc-81 Sorcery Plus 9.99
+-48 Micro prolog 39.99 C-82 King Solomons Mines Pt. 1 9.99
+-49 Master Planner 59.99 C-83 Fighting Warrior/Exploding Fist 14.99
6-50 Mallard Basic 49.99 P-86 ABC Accounts 149.99
P-51 Mail Merge 34.99 C-87 HiSoft C 39.99

MINIMUM ORDER $25 - C.0.D AVAILABLE - ORDER NOW FOR CHRISTMAS

How to order MAIL ORDERS TO: STRATEGY SOFTWARE

PO BOX 11, BLACKMANS BAY, TASMANIA 7052
1. MAIL ORDER Enquiries (002) 29 4377

Please include all information requested on | | Orders — local call fee — (008) 030930 _
the order form, and make sure you have Use yOUf V/SA, MASTERCARD or BANKCARD fOI’ ma/l Orders.

enclosed your name and address (you'd be
ORDER FORM

surprised!) and the correct amount for the
CAT # TITLE PRICE

goods you require.

If sending a cheque or ordering using
Visa, Mastercard or Bankcard please ensure
that the date on your cheque is valid (ie 1987
not 1986) and that your credit card has not
expired.

2. TELEPHONE ORDER (008) 030930

1

I

1

1

1

1

1

I

1
Please follow the instructions below carefully !
before ringing. This number will only be !
answered by a machine and cannot be used I
for general enquiries or messages. Anything | |
|

|

|

|

1

1

|

1

i

1

1

other than an order will be ignored - you
have been warned!

A) Complete the order form at right as
though you were going to order by mail. Do
not wait until ringing before deciding which
titles you require or trying to find your credit
card. The answering machine is voice
activated and any pause over a couple of
seconds will result in the machine hanging
up on you.

TOTAL

B) When the machine answers, read the
order from your order form slowly, clearly | I Bankcard D Mastercard D Visa D Cheque D

P s ot Wers pedae panin | Lol Vo oS e Y
telephone number just in case we can't

I
e sel e R na o LCIOIB0 . s s i pe e L et (L Expiry I:[ID

C) This service will be in operation 24 hours | |
a day, every day of the year. [COMPUTER

D) Allow 28 days for the delivery of your I
order — orders which we cannot despatch Address
within 2-3 days of receipt will be advised of !

the likely delay by mail. Back issue orderswill (* Postecode (6. i ilie .
be mailed at the same time as the current | | 1
issue. BERRORE L L e Dt e N T S e N el e e Datel o de e B I

SpECiAl Christmas Offer! [Back issues 0le" $2.40 each |
for A compleTE SET |

| l
i ;f'l
~ SAVINGS ON MAGAZINES
| | |
I |
| |
| I

Use the ORDER FORM above.Just write which issues you want

starting August 86, at only $3.45 each, or get the super e
bargain of a complete set of 15 for only $36. ONI—Y WH"-E

Al prices include pack and post costs. |STOCKS LAST

SPEcCIALS FOR SERIOUS USERS
\

0 Pasca/Mr ~—CA/MFy:
Pevpactl |

g \ The most complete Pascal
i | available for microcom-
! puter program develop-
Devpac 80 ment; Pascal MT is a highly
structured language with
Devpac 80 is a suite of pro- extensive datatypes.Pascal
grams designed to help you MT is the full ISO standard
write and debug Z80 assem- extended to provide a com-
bler programs using the CP/ prehensive, professional
M operating system. ED 80 programming environment
is a full screen text editor, for industrial, commercial
GENS8O is a Z80 macro as- and educational applica-
sembler and MONS8O is a tions.
front panel debugger and
disassembler. Works on all
CPCs

- Quatity
H\%»h %ﬂw\,\m\

e

HiSoft C is one of the most
important products yet re-
leased for Amstrad comput-
ers; this compiler for the
popular and effective C pro-
gramming language is a
high specification, yet easy
to use product.

1 - ,«.3\?@’
| TasPrint 8000 \ @-\\(-;%E
/ ,:\\, (‘JA i /\ Q\“\\'&\:’
A1) & atiet
/ Tasprint gives PCW owners 5 ﬁiw‘“‘*"
§ g K\‘,;;&\\

the option of printing text
filesin one of eight different

and impressive typestyles Pocket Wordstar
/ on the PCW printer

Wordstar is the world's

most popular Word Process- i
ing software. Pocket Word- .
star DeLuxe and Pocket M' /
Wordstar are versions espe- Crop,, /
DR Draw cially tailored for your 6128
or PCW, and retain all the for the
| DR Draw lets you create features that made Word- AMSTR AD
E%high Fiite vousl s Tot star the industry standard. 6128
': business presentations and Includes spelling checker
reports. Using an interac- and mail merge.

tive picture editor, you can
i draw a wide variety of

| <% ‘charts, diagrams and text
/ 5 _aslides - quickly and easily.
o

Continued from page 30

You are also prompted for your name and, since the
program scans your answer, it is possible to play the
role of either a male or female detective. The attitude
and answers given by the other characters in the game
depend in some measure on your choice.

Despite being classed at an introductory level there is
plenty for the seasoned adventurer. Some of the clues
tend to be a bit obvious but nothing is quite as straightfor-
ward as it seems.

For the beginner it must be the best introductionto the
genre | have seenfor some time. There are plenty of clues
to help you of the “The butler looks meaningfully at the
mirror” type and as with all Infocom adventures, it's so well
written that it encourages the novice.

The packaging is up to the usual high standard and
includes the history of the first castle ghost, the letters, a
map and tourist guide to the castle and a Moonmist
iron—on T shirt transfer.

Overall, another classic game from the best adventure
software house in the world. A bit too easy for the sea-
soned player but a superb game for the beginner.

Presentatlon 100%

The bestin the busrness —why don'’t more companres :
take a leaf out of their books?

Atmosphere 100% :

Posmvely dnpprng' ‘

Frustratlon factor 100% -

It S armed at the begrnner and marked accordlngly
Value for money 100%

1 wrsh it was cheaper so that more people would try it.
But still worth every penny.

Overall 100%
Can infocom do no wrong?

Mastertronic; cass, joystick or keys

This is an arcade—style adventure based loosely on the
exploits of the characters in Robert Louis Stevenson’s
classic horror story.

If Dr Jackle had known what he knows now he wouldn't
have taken the potion which turned him into the evil Mr
Wide. He wouldn’t have had to explore the park and the
underground sewers in order to find Dr Piqued’s antidote.

He wouldn't have had to encounter the monstrous
green bottle (Arg! No. Not the green bottle), the intelligent
spike or the room of time increase gas (Stevenson was
never like this).

Neither would he have had to move his way through
Hyde Park on a penny farthing looking for clues (Take
object, Drop object, List object) and then explore the
underground tunnels and hack his way through to the
quarry and the dark forest (aren’t they all).

There are a few clues, for example, “a small seafish is
here”. My, my, | wonder what that could mean. You can
save the game, though, so you do have a chance to find
out although it takes ages to save.

It's easy enough to explore the limits of the park but you
may need to map the tunnels. The first few were pretty
boring — well, | didn’t find anything of interest — and you
also need to work out what you can do with the objects. |
had rather hoped the key would open the lock but perhaps
that was the fish, it keeps mentioning.

Computing With The Amstrad — December1987 35

What | Want to know is: if Wide is so evil why does he
want to go back to being Dr Jackle?

Ifyou like graphic arcade adventures and you like trying
to piece together clues devised by fiendish programmers
then this is a reasonable few dollars' worth. Try it first by
all means but don’t go out of your way.

lan Waugh

- Playability 55%
- Too much trial and error for me.
' Addictive qualities 55%

 Value for money 76%
Okay for the money.
Overall55%
:Very much a matter of taste

Fight your way pastthe hype of Page Three Maria Whit-
taker who may appear on the packaging depending on
where you buy this Palace combat game. Ignoring the
muscular chappie on the cover who sports one of the wigs
rejected by Elton John, and what are you left with? Well,
one of the best armed—combat games released for the
Amstrad.

Palace have produced a bloody and vicious
sword-fighting scenario about which itis difficult to say too
much.

Set against four beautifully drawn colour backgrounds,
each swordsman has up to 32 different moves. They allow
him every possible combination of neck chop, head butt,
kick, and chops to neck, body and leg.

While other combat games have shied away from
showing the realistic results of metal slicing into unpro-
tected human flesh, Barbarian does quite the opposite.

Heads are severed, blood gushes out and the victor
boasts about his conquest to the world.

While | found it great fun to play and an efficient way of
ridding yourself of any pent—up aggression. | am in two
minds as to whether such a game is basically a goodidea,
especially when aimed at the younger player.

It could be argued that a nation of young people brought
up on video nasties will not find anything distasteful here,
but this kind of game does pander to sadistic and aggres-
sive instincts.

There are comical touches, too, as the slimy little green
creature drags off the corpses of your slain opponents.

Presentation 90%
- Very easy to choose options, one or two players.
Graphics 92%

Superb colour backgrounds, and excellent character
animation.

Sound 80%

Nice music, but very simple sound effects.
Playability 90%

Very good joystick response, easy to play.
Addictive qualities 90%

You want to keep playing, but the sight of blood may
not appeal to those with good taste.

Value for money 85%
Yet another fighting game, but the most realistic yet.
Overall 90%

Buy it if you enjoy bad taste and have a strong
stomach.

36 Computing With The Amstrad — December1987

Barbarian has allthe right programmingtouchesinclud-
ing animated serpents which frame the playing area and
switchable music/sound effects.

Separately loaded backgrounds enhance the presen-
tation and there is good joystick control, and superb move-
ments on-screen, apparently modelled from real life ac-
tion. lwonder, though, how you determine how high blood
should spurt from the neck of a severed head.

Victor Laszio

Ultimate cassette, joystick or keys

Ultimate has always been knownforit’s 3D adventures,
most of which are very much the same. Bubbler recap-
tures the old style combining arcade action with 3D graph-
ics.

It places you in a geometric world populated by a host
of nasty creatures trying to toss you into the abyss which
surrounds the area. It also includes a quest.

Dotted around are bubble producers which need to be
deactivated by capping them with glass cones. Each
screen has several tunnel systems which allow you and
your bubble to descend from one level to another, while at
the same time adding a cone to your collection.

;j;;‘,Presentation 90% - ,
It’s nice to see a game with a two—player mode, even

ititiso y one p _yer ata tlme
: Graphics 82% _
I'Clear but a mtle bland

Sound25%

“Bleep. When will Ultimate realise the Amstrad is not a
'_Spectrum

= Playabmty 74%

. Addlctlve qualltles 75%

fA little: frustratmg but wnll have you playmg tlme and,
. iagam '

 Overall 73% . | |
A neat Inttle game for ramy days

Controlling your bubble is strange. Instead of pushing
the joystick in the direction you want to go, as normal, the
left and right keys rotate it on the spot and a push forward
on the stick moves it in the chosen direction.

The first problems you’ll encounter are the jumping spi-
ders which appear from the tops of the bubble producers
and pulsating floor pieces. They chase you everywhere
but only move slowly from one square to another.

Small towers can fire long-range homing projectiles
which you must avoid or forfeit a life. Thankfully once you
have been shot by one they blaze away in the wrong
direction, and will not become accurate until you begin to
move forward.

Not every adversary is deadly —some merely annoy as
they try to push you off the edge of the landscape.
However, you can defend yourself with high velocity mini
bubbles which will destroy all moving objects.

This is Ultimate’s best release for over six months and
represents the way 3D-type games are going. A lot more
could have been done, but it is still a good buy for those of
you who enjoy games of skill.

Graphically Bubbleris good, with clearly defined sprites
and smooth scrolling but unusually does not have the
same “feel” of previous Ultimate games. And the sound
leaves a lot to be desired.

It’s a mixture of a lot of old ideas, and worth shelling out
for if nothing else on the shelves appeals to you.

Anthony Clarke

Computing With The Amstrad — December1987 37

_PROHIBITION

LTI 770000 7707000707070

\

D707

Loriciels cass, disc, joystick or keys

After weeks of silence the phone rang. Onthe other end
was Captain Bleak, who sounded troubled. He wanted me
to clean up the city.

I crossed town on foot to the dirtiest dive in New York,
Deathstone Alley — a place where even gangsters tread
softly. | made my way to the top of a building, across the
streetfrom Little Hitler's den . Taking out my rifle | prepared
to kill.

I's prohibition time in the late 1920’s when gangsters
ruled. The game is deceptively simple. You must move
your sights around a scrolling background, finding and
shooting gangsters. The problems become evident when
you realise that the entire playing area covers around 20
screens.

Each target gangster has a number of hiding places.
Some shoot from windows, behind car doors or the roof.
Others can be found standing in the street or leaningon a
corner.

While cleaning up you may confront women hostages
being used as a shield by the more ruthless gangsters.
Random shooting won't work here, instead you must aim
carefully at the gangsters head and fire.

Due to the size of the playing area you are given a
helping hand in finding the target — an arrow appears and
points in the direction of the gangster.

Once all the street gangsters have been despatched
you enter the gang’s lair.

Success is rewarded by a bonus dependent on how
many times you ducked out of the way of the bullets, and
a chance to clean up a further area of the alley.

Prohibition comes in two versions, one for the 464 and
664 and an improved version for the 6128.

This includes an extended playing area, larger screen
display, fancy character set and two pieces of music.
These extras may make the 6128 version superior, but the
464 and 664 versions are still great to play.

The graphics are some of the best on Amstrad with
colourful Mode backgrounds and well-defined realistic
gangster characters.

This isn't quite the best game I've ever played, but it is
very well programmed, offers a good blast and will have
you coming back time and again.

Anthony Clarke

P'f"e'sen’tatioﬁ'FZQS%- .

All the trimming of a truly great game.

Graphics 98% , -

You would be hard pushed to improve them
Sound 81% L ‘

Two good tunes and some interesting bullet effects.
Playability 85% '

Easy to control, slightly harder to master.
Addictive qualities 79%

You’ll be back for more.

Value for money 75%

A little pricey but worth the ejktr’a for a good game.
Overall 86% - o

One of the best “spirit lifting” games since Ghostbusters.

38 Computing With The Amstrad — December1987

A ’P

///I/w/ ////// M/s W /
/ ///////////ﬁ///E/ ////// /////////

&\

Piranha,cass, disc, joystick or keys

Having failed as an accountant and finding life as a lion
tamer palling rather than appalling. Weems turns his
talents to vampire hunting. In the same vein as Gauntlet
your task is to guide him through six levels of the Great
She—-Vampire’s mansion.

The object is to collect a weapon on each level —
crucifix, bible, mallet, stake and so on. Allare needed if you
are to succeed in the final conflict with the Great
She-Vampire.

On yourtravels you are constantly assailed by vampire
bats, she— vampires and Frankenstein monsters, who
fancy a swift pint of the red stuff.

Each level is spread over several screens and encoun-
ters with any of the toothies drains your blood count,
eventually leading to your death.

Fortunately bottles of blood are scattered around which
can top up your fluid level. Also to be picked up are garlic
bombs and keys to numerous doors.

The bombs clear a screen of everything unfriendly
apart from she-vampires which you must despatch with a
few well-placed shots from your trusty garlic gun.

When a screen has been cleared either by bomb orgun
you are free to drill the coffins full of garlic, which stops
them producing a new wave of nasties when you re-enter
the screen.

Matters are further complicated with hidden doors,
transporters and on level five taking the wrong exit from
the screen dumps you back at the start of the level. | never
managed to find my way to level six.

Graphics are executed in Mode 1 for detail but a rather
dingy choice of colours dulls the effect and it soon gets
tiing on the eyes. Sound is restricted to the fluttering of
leathery wings plus a few bleeps, bangs and tinkles.

The colours change on each level but the scenery is
very similar and this contributes to a lack of visual appeal.
But we allknow gameplay is what counts and I'm afraid the
game doesn’t shine here either.

As afull-price game it's competing with Gauntlet, Rana
Rama and the likes of Arkanoid, Head over Heels and
Starglider. I'd only opt for Weems if you're an addict of the
genre.

lan Sharpe

Presentation 50%
Definable keys and vanable sm lev 1.
'Graphlcs 60% ’
Detanled but not always cle r and |
Sound 10% .
The sound FX man must ve been off wuth asor
Playablllty 55% - :
:Challengmg but repetmve

.Addlctive qualmes 50%
.’Yes but not for long

A budget game at full pnc
’Overall 42% o

Computing With The Amstrad — December1987 39

o) o =
WWWWW
= ©
ﬂm.mUﬂ]
83809 ¢

//////////////// ///%

o c ©
£ mTm.amm
= : ¥dis

KNIGHT TYME
ertronic)

HE NIPPER

nnnnnnnn

SPINDIZZY

eeeeee

///////////////////////////////////

=
(Electric Dreams)

_

nmmopht
oakrl

Easydraw is a powerful
graphics utility which you
can use to create your own
spectacular titles, pictures
or games backgrounds. You
can even build up a picture,
save it part-finished to tape
or disc, reload it at a later
date and improve it until it
suits your needs.

CW = Clockwise
ACW = Anticlockwise
Start positions are the same.

Figure 1

electronic
brush &
canvdas

The picture you have created and
saved can be used in your own pro-
grams either by loading straight to
the screen or loading into the re-
served memory for recall when
needed.

The off-screen pictures shown
on these pages took only minutes to
produce, but of course it will take
you longer until you become famil-
iar with the facilities available.

Abriefresume of the capabilities
of each option is shown in Table I.

You would be well advised to
read the instructions in stages.
There are 19 options and each
needs practice to understand it
fully and become proficient with its
use. Read the guide to Easy Draw’s
functions down to the Beam option
first. Then try drawing different
coloured horizontal, vertical and
diagonal lines. Once you under-
stand these first five functions,
build upon your knowledge by read-
ing each subsequent option and
practising it until you understand
them all.

The following tips on drawing
circles and polygons will help to
make life a little easier for the first
time user:

¢ Estimating the start position for
plotting circles and polygons can
present some problems. In the early
stages these calculations can be
made much easier with the use of a
visual aid.

Draw a 100mm diameter circle
on a piece of clear plastic using a
compass and a felt tip pen. Then
mark the circle as a Figure I. When
estimating the start position for a
plot, hold the plastic with the O and
.5 vertical near the screen and read
off the position required.

Some interesting shapes can be
obtained quite simply by using the
part shape and directional plot
options as shown in Figures II and
III.

* You can change the colour while
plotting to produce a multicoloured
shape. Choose a high number of
sides to give you more time (there is

Computing With The Amstrad — December1987 41

Start positions: Any decimal fraction below 1 ie .16 as shown in Figure |

S = 817, 167
7 25
66 /33
625 325 v 867 417
Figure I1

Any of the start positions shown can be used

—_—
|
J | .8 ACW
8 CW 1, _!__
CW - Clockwise
ACW — Anti-clockwise
Figure I11

no limit). A polygon with 1,000
sides plots slowly and gives you
time to change colours or stop the
plot wherever you wish.

* Draw toTab can be implemented
when drawing circles and will pro-
duce a cone shape, whereas setting
Tab Move before entering the circle
option and then Drawing to Tab
will produce cylindrical shapes.

e If you make a mistake when
drawing a shape you can erase it
immediately by selecting the back-
ground colour and repeating the
process you have just used to create
the shape. However it can be diffi-
cult to remember exactly the sizes
and positions used. A much easier
way is to set Tab at one side of the
shape, turn on the Draw to Tab
function and as the cursor is moved
the shape will be erased.

* To save a shape to memory you
candraw directly to the screen free-
hand. Alternatively you can pre-
pare a grid (Draw to Tab + Tab
Move) to guide you. Change the
drawing colour, set Tab, move to the
next tab setting and draw a line to
the previous tab then set the next

Tab. In this way the shape is
“memorised” while it is being
drawn. Draw it at about half the
size of the screen for the best re-
sults. A large shape reduces far
better than a small one enlarges.

¢ To exit from Easy Draw press
Ctrl+? as if you were going to save
the screen to memory, but answer N
to the first prompt and the option to
End will be given. Escape can only
be used in the main program when
an inputisrequired —such as Quick
Circle — so this is the ideal way to
access your listing to search for
typing errors.

To run the program without the
opening screen use RUN 200. If the
program stops as a result of a typing
error and you are halfway through
your first masterpiece don’t panic!
Put on the kettle, enter GOTO 550
the main program, and save the
picture before you do anything else.

¢ Use alight touch in the Memory
option as a prolonged keypress
toggles the memory on and off
quickly and will result in empty
shapesbeing numbered in memory.

¢ Before saving any picture re-
move the flashing cursor by either
moving it off the screen or by draw-
ing a line in the colour of that posi-
tion.

e When changing INKs make a
note of the command given at the
time asthese areneeded tobe setup
in our own program. Avoid chang-
ing INK 15 in (P): INK 4 in (E) and
INK 1 in (B) as these are used for
screen messages and you may end
up with one you can’t see. Change
them once your drawing is finished
to any INK you wish.

e Several optionsusethe sameline
for messages, so remember to
switch them off when you have fin-
ished with them ifyou are usingtwo
or three at once.

* Youcanincorporate pictures cre-
ated with Easydraw in your own
programs. When a picture is saved
the whole screen, not just the win-
dow, is saved. The border around
the window is, however, saved in
the background colour. So if you
recall a screen in one of your games
the border will be available for
on—screen prompts.

A saved picture can be loaded di-
rectly to screen when, of course, it
will be displayed immediately. List-
ing II shows the idea.

Alternatively you can load the
picture into memory that’s not
screen memory. When you want to
display it a simple machine code
routine will move it from storage
into screen memory.

This has the advantage that you
can move your stored picture onto
the screen, manipulate it, and re-
save it, as in Listing III.

42 Computing With The Amstrad — December1987

Colour choice

To change the drawing colour press Shift + the
corresponding letter key opposite the colour block.

Ink change

Press Ctrl + P followed by the appropriate letter key
and Enter. The selected colour will turn black, at which
point pressing Shift will move through the colour pal-
ette and Enter will fix the chosen colour.

Cursor control

The arrow keys control the cursor, and coupled with
Shift will jump the cursor 20 pixels for faster move-
ment.

Cursor jump

Ctrl + J will alter the size. Enter the horizontal and
vertical size.

Beam

Ctrl + Btoggles Beam on/offto draw lines, and cursor
jump can be implemented. Alternatively Ctrl + Copy
toggles the Copy key to draw but only when it is held
down. With the latter option cursor jump cannot be
implemented to draw — only to move.

Tab setting

The tab key “sets” the cursor position which is
memorised and indicated in yellow above the perma-
nently displayed X, Y coordinates of the current cursor.

Lines can be drawn to Tab from any position, either
on or off the screen.

Draw single line to Tab

Shift + Tab draws a line from the current cursor
position to the previously set Tab position.

Draw to Tab

Ctrl + D toggles this option to draw a line to Tab with
every move of the cursor — including any cursor jump
implementation. This is useful for drawing several
lines to Tab and avoids having to press Shift + Tab for
each line as in draw single line.

Fill
Place the cursor inside any shape and Ctrl + F will

fill it to the nearest vertical line under arrow key con-
trol as the cursor is moved vertically.

Erase

Selectlng background colour A with the Beam Draw
to Tab, or Fill options will remove foreground colours.
For full screen erasure press Shift + Clr. :

Quick circle

Use the arrow keys to place the centre, press Ctrl +
Q and either enter a radius > 4 or press 0. The latter
enables the left or right arrow keys to move a second

User’s Guide to Easyi_ Draw’s functions

_jump to create a grid. This also works in the circle

cursor with which the radius can be set by pressing
Enter.
- Circles, ellipses and poly'gons
Use the arrow keys to position the shape, then
press Ctrl and Clr and input both horizontal and

vertical radii using the same options as a quick
circle.

Input the start position, a number between 0
and 1 (.5 will start to draw from the bottom of the
shape). This is calculated using decimal fractions
on a clockwise circle.

Input the number of sides. If this number is less
than 20 you will be prompted for a delay. This is
only needed if a part shape is required so that
pressing the spacebar can halt the plotting.

Answer 0 or 1 to the prompt for clockw1se or
anti—clockwise plotting.

Tab move

The Tab setting can be made to move with the
cursor by pressing Ctrl + Tab. Coupled with Draw
to Tab parallel lines can be drawn using cursor

(polygon routine but must be set before Ctrl + Clr
Shape memory

Ctrl + M stores and numbers up to 40 shapes to
be recalled and drawn at any size. Press Tab, and
while drawing a continuous line press Tab again at
every change in direction (only Tab settings"are’
memorised). Check your shapes using the redrawv
option before you save using Ctrl + S. ~-

Ctrl + L will load a new shape file from memory.

Redraw shape '

Ctrl + Rand enter shape number and magmtudev '
required (from .1 upwards), to enlarge or reduce
the original. L :

Type at cursor

Press Ctrl + T to enter text, numbers or Ctrl
graphics at the cursor position. .

- Go back to options

- Ctrl + G will return you to the opening optxons
for amode change or toload a picture from memoryi.*;:;

Save screen v - :
Ctrl + ? saves the screen to tape or diSc.
Load screen '

A saved screen canbe 1oaded mto memory usmg
either the option at the startof the program or Ctrl
+ L at any time.

Computing With The Amstrad — December1987 43

50 REHM XXKXKKKKKKKAIKKKAKKKKKkKXXkkXk EA

SY DRAW K%K KKK KK K KKK KK K KK K KKK KKK X

X

80 REHM XXX A screen drawing and pa
inting utility by Glynne Davies XX

X

70 REM

80 REM

S0 REH

100 REM

110 MEMORY &665A4A REM X reserve m

emory for screen dump and disc dri

ve X

120 GOSUB 3700: REM X load machine
code for memory dump X

130 REM *%xx Title page XXX

140 MODE O:FOR n=-PI TO 3 STEP PI/
186:pt= (pt+1) MOD 7:pc=pt+1l

150 TAG: PLOT 80+ (20%SIN(n)),200+(
120xC0S(n)), pc

160 PRINT "%——EASY DRAW-——%";:NEXT:

TAGOFF

170 LOCATE 10,23:PRINT "BY":LOCATE
6,25: PEN 3:PRINT "G.M.DAVIES"
180 FOR n=1 TO 6000:NEXT

190 CALL &BCO2

200 MODE 2:INK 15,1:INK 0,13:INK 1
,0:%x=286:y=150:beam =0:testab=3

210 jump=20: junpy=20:DIM blank$(10
0):DIM character$(40)

220 beam=0:LOCATE 17,12:INPUT "Do
you want to load a picture to memo

ry Y or N";pic$

230 IF pic$="Y" OR pic$="y" THEN L

OCATE 20, 14:INPUT "Type in the nam
e of the picture"s;picture$:ELSE GO

TO250

240 LOAD picture$, &6875

250 CLS:LOCATE 20, 12:INPUT
type in the mode required

"Please
(ie. O

or 1)";modescreen:IF modescreen
> 1 OR modescreen <0 THEN GOTO
250

260 IF modescreen =1 THEN movx= 2:
ELSE movx=4
270 IF modescreen >1 THEN GOTO 250
280 MODE modescreen:INK 1,24

290 LOCATE(4x(modescreenx2)+5),12:

INPUT "PICTURE Y/N"3Y$
300 CLS
310 IF Y$="Y" OR Y#$="y" THEN CALL
26215

320 GOSUB 360
330 GOSUB 510
340 END

350 REM x%xx Initialize - set up th
€ screen XXX

REM X initialize X
REM x program X

360 WINDOW #2,1,2,1,22:WINDOW #3,1
,80/movx,23,25:WINDOW #0,1,80/movx
,23,25:WINDOW #4,3,80/movx, 1,22
370 PAPER #2,0:PAPER #3, 15:CLS #2:
CLS #3

380 ORIGIN 64,48,64,640,48,400

390 DRAW 574,1,3:DRAW 574,350,3:DR
AW 1,350,3:DRAW 1,1,3

400 PEN #2,0:LOCATE #2,2,20:PRINT
#2,CHR$(143) 3

410 REM xx Draw colours XX

420 FOR count=0 TO 15

430 PEN #2,count

440 LOCATE #2,1,count+1:PRINT #2,C
HR$ (85+count) ;CHR$(233)

450 NEXT count

460 PEN #2,4:LOCATE #2,1, 1:PRINT #
2’ IIAII

470 PEN #2,5:LOCATE #2,1, 17:PRINT
#2’ nyn

480 IF movx=2 THEN LOCATE #2,1,1:P
RINT #2,"A":LOCATE #2,1,5:PRINT #2
,"E":LOCATE #2,1,9:PRINT #2,"I":LO
CATE #2,1,13:PRINT #2,"M"

490 shift$="SHIFT":FOR count=1 TO
5:LOCATE #2,1,17+count:PRINT #2,MI
D$ (shift$,count, 1) :NEXT

495 PEN #3, 1:LOCATE #3, 13,3:PRINT
#3, "Beam off";:REM beam off

500 REM xxXX program XXX

505 ON ERROR GOTO 505

510 WHILE exit <1

520 IF INKEY (1)=0 THEN PLOT x,y,t
es:x=x+movx:IF movtab=1 THEN extra
X=extrax+movx

530 IF INKEY (8)=0 THEN PLOT x,y,t
es:xX=x-movx:IF movtab=1 THEN extra
X=exXxtrax-movx

540 IF INKEY (0)=0 THEN PLOT x,y.,t

es:y=y+2:G0OSUB 2250:IF movtab=1 TH
EN extray=extray+2:REM gosub to fi
11 routine

550 IF INKEY (2)=0 THEN PLOT x,y,t
es:y=y-2:G0SUB 2250:IF movtab=1 TH
EN extray=extray-2

560 IF INKEY (1)=32 THEN PLOT x,y,
tes:x=x+jump:IF movtab=1 THEN extr
ax=extrax+jump

570 IF INKEY (8)=32 THEN PLOT x,y,
tes:xXx=xX—jump:IF movtab=1 THEN extr
ax=extrax—jump

580 IF INKEY (0)=32 THEN PLOT x,y,

tes:y=y+jumpy:IF movtab=1 THEN ext
ray=extray+jumpy
580 IF INKEY (2)=32 THEN PLOT x,y,
tes:y=y—-jumpy:IF movtab=1 THEN ext
ray=extray-jumpy

44 Computing With The Amstrad — December1987

600 IF mem=1 AND xp=XPOS AND yp=YP
0S AND memtrip=1 THEN characters$(s
h)=character$(sh)+3STR$(xrel)+STR$(
yrel):memtrip=0:IF LEN(charact
er$(sh)) >240 THEN SOUND 1,300,25:
PEN #3, 1:LOCATE #3, 1, 1:PRINT #3,"
Last tab setting ":mem=0
610 IF INKEY(50)=128 THEN SOUND 1,
100,20:GOSUB 2920:REM redraw memor
y shape
620 IF INKEY(36)=128 THEN SOUND 1,
100, 15:GOSUB 3520: REM load pictur
e into memory
830 IF INKEY(18)=32 THEN CLS #4:MO
VE O,0:DRAW 574,1,3:DRAW 574,350,3
:DRAW 1,350,3:DRAW 1,1,3:HOVE x,y:
REM X erase picture X
6840 IF INKEY (9)=128 THEN SOUND 1,
120, 10:beamtrip=(beantrip+1) MOD 2
:IF beamtrip=0 THEN PEN #3, 1:LOCAT
E #3,13,3:PRINT #3, "Beam off";
:REM beam on/off/on copy key
650 IF beamtrip=0 THEN GOTO 670
660 IF INKEY (9)=0 THEN beam=1:PEN
#3,4:LOCATE #3, 13,3:PRINT #3, "Bea
m on "3;:ELSE beam=0:PEN #3,4:LOCAT
E #3,13,3:PRINT #3, "Beam off";
:REM beam on/off/on copy key
870 IF beamtrip=1 THEN GOTO 880
680 IF INKEY (54)=128 THEN SOUND 1
, 100, 10:beam=(bean+1) MOD 2:IF bea
m=1 THEN PEN #3, 1:LOCATE #3,13,3:P
RINT #3, "Beam on ";:ELSE beam=
O:PEN #3, 1:LOCATE #3, 13,3:PRINT #3
,"Beam off";:REM beam on/off
890 IF INKEY(68)=128 THEN SOUND 1,
100,20:movtab=(movtab+1) MOD 2:IF
movtab=1 THEN PEN #3,1:LOCATE #3,1
,2:PRINT #3, "Tab moving L
:ELSE PEN #3,1: LOCATE #3,1,2:PRIN
T #3, "Tab stopped ":xp=xptextr
ax:yp=ypt+extray:extrax=0:extray=0
:REM moving tab
700 IF INKEY(35)=128 THEN SOUND 1,
100, 10:GOSUB 3350 REM input from
tape
710 IF INKEY (21)=32 THEN GOSUB 10
40: REM x pen colours x
730 IF INKEY (45)=128 THEN SOUND 1
, 100,25:GOSUB 2800: REM cursor jum
P
740 IF INKEY (68)=0 THEN SOUND 1,1
00,5:xrel=x—-xp:yrel=y-yp:Xp=X:yp=y
:PEN #3, 1:LOCATE #3,1,2:PRINT #3,"
X";XPOS;"Y";YPOS:tb=1:memtrip=
1:REM tab setting
750 IF sh> 39 THEN GOTO 770
760 IF INKEY (38)=128 THEN SOUND 1

,100,5:mem=(men+1) MOD 2:IF mem=1
THEN PEN #3, 1:LOCATE #3,1, 1:PRINT
#3, "Memory on shape"3;sh:ELSE P
EN #3,1:LOCATE #3,1,1:PRINT #3, "He
mory is off ":sh=sh+1
770 IF INKEY (81)=128 THEN SOUND 1
;100,55 F41=0f1 1410 . HOD 28 1IF £il=1
THEN LOCATE #3,1, 1:PRINT #3, "Draw
to tab on ":ELSE LOCATE #3,1,
1:PRINT #3, "Draw to tab off ":
draw to tab function
780 IF INKEY(52)=128 THEN SOUND 1,
200,25:GOSUB 3830:REM go to option
s pages
790 IF INKEY (80)=128 THEN SOUND 1
, 100,5: GOSUB 3230 REM save shap
es to tape
800 IF INKEY (87)=128 THEN SOUND 1
, 100,25:PLOT x,y, 14:GOSUB 960 :REHM
¥ Quick circle x

810 IF INKEY (68)=32 THEN DRAWR xp
+extrax—XP0S, yptextray-YPOS,p :PLO
T x,y, 14
820 IF INKEY (18)=128 THEN SOUND 1
, 100, 10:PLOT x,y, 14: GOSUB 1230
REM X circles, polygons X

830 IF INKEY (53)=128 THEN SOUND 1
,100,5:infil=(infil+1l) MOD 2:1IF in
fil=1 THEN filc=TEST(x-2,y-2):LOCA
TE #3, 1, 1:PRINT #3;"Fill .on

":ELSE LOCATE #3,1, 1:PRINT #

3, "Fill off "

840 IF INKEY(27)=128 THEN SOUND 1,
100,5: GOSUB 2450 :REM % ink colou
r change X

850 IF INKEY (30)=128 THEN SOUND 1
, 100,5:MOVE O,0:DRAW 574, 1,3:DRAW
574,350,3:DRAW 1,350,3:DRAW 1,1,3:
GOTO 2850 REM X picture save

X
860 IF INKEY(51)=128 THEN SOUND 1,
100,5:G0OSUB 2070 REM x type at c
ursor X

870 IF x=xx AND y=yy THEN GOTO 940
880 IF beam=1 THEN DRAW x,y,p:tes=

REM

P

890 IF beam=0 THEN tes=TEST(x,y):x
x=x:yy=y:PLOT x,y, 14

800 IF tb=1 AND fil =1 THEN DRAWR
xptextrax—-XPOS, yp+textray-YPOS, p

910 PEN #3,4:LOCATE #3,1,3:PRINT #
3‘ IIXII;X;llYII;y

820 IF xp=xpt AND yp=ypt AND extra
x=xextra AND extray=yextra THEN GO

TO 840

930 PEN #3, 1:LOCATE #3,1,2:PRINT #

3, "X"3xptextrax;"Y";yptextray :xpt

=Xp:ypPt=yp:Xextra=extrax:yextra=ex

tray

Computing With The Amstrad — December1987 45

940 WEND

950 REM *xx Quick circle xx

8960 CALL &BB1B:IF INKEY(687)=128 TH
EN GOTO 860:CALL &BB1B

870 .qc=17PEN #3,1:LOCATE #3,1,1:IN
PUT #3, "RADIUS<-> above 4 or curso
r enter 0"3radx$:IF radx$=" " OR r
adx$="" THEN GOTO 970

8975 IF ASC(radx$) < 48 THEN GOTO 9
70

980 radx= VAL(radx$):LOCATE #3,1,1
:PRINT #3,SPACE$ (40):IF radx=0 TH
EN GOSUB 1850

990 radx=radx+(radx MOD movx)

E x+radx,y

1000 FOR count=0 TO 360 STEP 2:DEG
:DRAW x+(radx*COS(count)),y+(radxx

SIN(count)),p:NEXT

1010 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

1020 RAD:qc=0:RETURN

1030 REM %% pen colour change Xx
1040 IF INKEY (69)=32 THEN SOUND 1
» 150,5:p=0 :REM % A X

1050 IF INKEY (54)=32 THEN SOUND 1
+150,52p=1 REM ¥ B %

1060 IF INKEY (62)=32 THEN SOUND 1
» 150,5:p=2 SREM X -C X%

1070 IF INKEY (81)=32 THEN SOUND 1
s 150, 5:p=8 :REM_%X'D %

1080 IF INKEY (58)=32 THEN SOUND 1
, 150,5:p=4 :REM X E x

1090 IF INKEY (53)=32 THEN SOUND 1
» 150,5:p=5 :REM X F %

1100 IF INKEY (52)=32 THEN SOUND 1
,150,5:p=6 :REM % G X

1110 IF INKEY (44)=32 THEN SOUND 1
, 150,5:p=7 :REM x H x

1120 IF INKEY (35)=32 THEN SOUND 1
,150,5:p=8 :REM % I X%

1130 IF INKEY (45)=32 THEN
s, 150,5:p=9 :REM X% J Xk

1140 IF INKEY (37)=32 THEN SOUND 1
, 150,5:p=10:REM % K x

1150 IF INKEY (38)=32 THEN SOUND 1
s 150,5:p=11*REM *x L X%

1160 IF INKEY (38)=32 THEN SOUND 1
s 190, 52 p=12:REN %X M X%

1170 IF INKEY (48)=32 THEN SOUND 1
+150,5:p=13:REM %X N X

1180 IF INKEY (34)=32 THEN SOUND 1
» 150,5:p=14:REM x O X

1180 IF INKEY (27)=32 THEN SOUND 1
» 150,5:p=15:REM % P X

1200 PEN #2,p:LOCATE #2,2,20:PRINT
#2,CHR$(233) 3

1210 RETURN

1220 REM X%xX circles XXX

:MOV

SOUND 1

1230 CALL &BB1B:IF INKEY(16)=128 T

HEN GOTO 1230:CALL &BB1B

1240 PEN #3, 10:LOCATE #3,1, 1:INPUT
#3, "RADIUS<-> above 4 or cursor e

nter 0"j;radx$:IF radx$= " " OR rad

x$="" THEN GOTO 1240

1245 IF ASC(radx$) < 48 THEN GOTO

1240

1250 radx= VAL(radx$)

1260 LOCATE #3,1, 1:PRINT #3,SPACE$
(40):1IF VAL(radx$) < 4 THEN GOSUB
1850:GOTO 1300

1270 LOCATE #3,1, 1:PRINT #3,SPACES
(40)

1280 LOCATE #3,1,1:INPUT #3, "RADIU

S up/down >2";irady$:IF radys$=" " O

R rady$="" THEN GOTO 1280

1285 IF ASC(rady$) < 48 THEN GOTO

1280

1280 rady=VAL(rady$):IF rady <2 TH

EN GOSUB 1940

1300 LOCATE #3,1,1:PRINT #3,SFACES
(60)

1310 LOCATE #3,1,1:INPUT #3, "Start
position O to 1 (ie .B85)";stposs$:

IF stpos$=" " OR stpos$="" THEN GO

TO 1310

1315 IF ASC(stpos$) < 46 THEN GOTO
1310

1320 stpos=VAL(stpos$):IF VAL(stpo

s$) >1 THEN LOCATE #3,1, 1:PRINT #3
, "BETWEEN 0 and 1 ie. .1 .25 .7 .8
":FOR n=1 TO 1000:NEXT:GOTO 13

10

1330 LOCATE #3,1,1:INPUT #3, "Numbe

r of sides. Go >70 for circles";si

de$:IF sides$=" " OR sides$="" THEN

GOTO 1330

1335 IF ASC(side$)

330

1340 side=VAL(side%$):IF VAL(side%)
< 3 THEN GOTO 1330

1350 poly=(2%PIl)/side

1360 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

1365 IF side > 19 THEN GOTO 1380

REM miss delay

1370 IF side < 20 THEN LOCATE #3,1
, 1:INPUT #3, "state delay ie. 200 f

or part shape";delay$:IF delays$="
" OR delay$="" THEN GOTO 1370

1375 IF side < 20 AND ASC(delays$)

< 48 THEN GOTO 1370: ELSE delay=VA

L(delay$):LOCATE #3,1, 1:PRINT #3,

SPACE$(40)

1380 LOCATE #3,1,1:INPUT #3, "Clock

wise plotting O Anticlockwise 1";3c

Ww$:IF cus=" " OR cw$="" THEN GOTO

<48 THEN GOTO 1

46 Computing With The Amstrad — December1987

1380

1385 IF ASC(cu$)
1390 cw=VAL(cw$):IF VAL(cw$)

EN GOTO 1380

1400 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

1410 LOCATE #3,1,1:INPUT #3, "Plot

from the cursor 1 or the centre 0"
;startat$:IF startat$=" " OR start

ats="" THEN GOTO 1410
1415 IF ASC(startat$)

TO 1410

1420 startat=VAL(startat$):IF VAL(

startat$) >1 THEN GOTO 1410

1430 IF tb=0 THEN GOTO 1460

1440 LOCATE #3,1,1:INPUT #3, "Draw

to tab setting 1 or O for off (3D)
";tba$:IF tba%=" " OR tba$="" THEN

<48 THEN 1380
>1 TH

< 48 THEN GO

GOTO 1440
1445 1IF ASC(tbas) <48 THEN GOTO 14
40

1450 tba=VAL(tba$):IF VAL(tbas) >
1 THEN GOTO 1440

1480 LOCATE #3,1, 1:PRINT #3,SPACE%
(40)

1470 LOCATE #3,1,1:PRINT #3, "SPACE
BAR TO STOP"

1475 radx=radx+(radx MOD movx)
1480 IF cw=1 THEN GOTO 1680: REM a

nticlockwise

1490 IF startat=0 THEN PLOT x,y,te

s

1500 IF startat=1 THEN x=x-{(radxx

SIN(stposx2xPI)) :y=y-(rady*COS(stp

0sx2%xPI)):MOVE x,y

1510 MOVE x+(radxXSIN(stposx2xPI))
,y+(radyxCOS(stposx2%xPI))

1520 REM XX circle clockwise xXx
1530 FOR count= stpos*2%PI TO (4xP
I)+poly STEP poly

1540 DRAW x+(radx*SIN(count)),y+(r
ady*COS(count)),p:IF movtab=1 THEN
extrax=(XPOS—-x)-radxXSIN(stposx2x
PI):extray=(YPOS-y)-rady*COS(s
tposk2xPI)

1550 IF INKEY (88)=32 THEN DRAWR x
ptextrax—XPOS,yptextray—-YPOS, p: MOV
E x+(radx*SIN(count)),y+(radyxCOS(
count))

1560 IF INKEY (21)=32 THEN GOSUB 1
040: REM X pen colours x

1570 IF tba=1 THEN DRAWR xp+extrax
-XPOS, yptextray-YPOS, p:MOVE x+(rad

X*kSIN(count)),y+(rady*xCOS(count))
1580 IF INKEY (47)=0 THEN count=(4

XPI)+poly

1590 IF xyoff=1 THEN GOTO 1810
1600 LOCATE #3,1,3:PRINT #3,"X";XP
0S;"Y"3;YPOS

1610 FOR rest=0 TO delay:IF INKEY
(47)=0 THEN count=(4%PI)+poly:ELSE
NEXT

1620 NEXT

1630 LOCATE #3,1,1:PRINT #3,SPACES
(B80) : x=XP0OS:y=YPOS

1640 LOCATE #3,1,3:PEN #3,4:PRINT
#3, "X";XPOS3;"Y"3;YPOS:IF beam=1 THE
N PEN #3, 1:LOCATE #3, 13,3:PRINT #3
,"Beam on ";:ELSE beam=0:PEN #

3, 1:LOCATE #3, 13,3:PRINT #3, "Bean
off";:REM beam on/off

1650 extrax=CINT(extrax):extray=CI
NT(extray)

18660 RETURN

1870 REM XX circle anticlockwise x
X

1680 stpos=stpos+0.5:IF startat=0
THEN PLOT x,y,tes

1680 IF startat=1 THEN x=x+(radxx

SIN(stposx2%PI)):y=y+(radyxCOS(stp
0sX2XxPI1))

1700 MOVE x-(radx*SIN(stposx2xPI))
, Y- (rady*COS(stposx2%PI))

1710 FOR count=2%PIxstpos TO - ((2x
PI)+poly) STEP -poly

1720 DRAW x—-(radx*SIN(count)),y—(r
adyxCOS(count)),p :IF movtab=1 THE
N extrax=(XPOS-x)+radx*SIN(2%PIxst
pos) :extray=(YPOS-y)+radyxCOS(
2XPIxstpos)

1730 IF INKEY (68)=32 THEN DRAWR x
ptextrax—XPOS, yp+extray-YPOS, p: MOV
E x-(radx*SIN(count)),y—-(radyxCOS(
count))

1740 IF tba=1 THEN DRAWR xp+extrax
-XPOS, yptextray-YPOS, p:MOVE x-(rad
*x%SIN(count)),y-(rady*COS(count))

Computing With The Amstrad — December1987 47

1750 IF INKEY
((2%xPI)+poly)
1760 LOCATE #3,1,3:PRINT. #3,"X";XP
08 "“Y" ;YPOS

1770 IF INKEY (21)=32 THEN GOSUB 1
040: REM X% pen colours x

1780 FOR rest=0 TO delay:IF INKEY
(47)=0 THEN count= —-((2%PI)+poly):
ELSE NEXT

1790 NEXT

1800 LOCATE #3,1,1:PRINT #3,SPACES
(60) : x=XP0S:y=YPOS:count =0

1810 LOCATE #3,1,3:PEN #3,4:PRINT
#3, "X"3;XPOS;"Y"sYPOS:IF beam=1 THE
N PEN #3, 1:LOCATE #3, 13,3:PRINT #3
,"Beam on ";:ELSE beam=0:PEN #
3,1:LOCATE #3, 13,3:PRINT #3, "Bean
off";:REM beam on/off

1820 extrax=CINT(extrax):extray=CI
NT (extray)

1830 RETURN

1840 REM % horizontal cursor radiu
s setting X

1850 WHILE radx =0

1860 LOCATE #3,1, 1:PRINT #3, "Use a
rrow keys <--> to place,then enter

1870 IF INKEY(1)=0 THEN PLOT x+rst
ep,y,rtes:rtes=TEST(x+rstep+movx,y
):rstep=rstep+movx:PLOT x+rstep,Vy,
14

1880 IF INKEY (8)=0 THEN PLOT x+rs
tep,y,rtes:rtes=TEST(x+rstep-movx,
y):irstep=rstep-movx:PLOT x+rstep,y
, 14

1890 IF INKEY (18)=0 THEN radx=ABS
(rstep):PLOT x+rstep,y,rtes

1800 PLOT x,y, 14

1910 WEND:rtes=14:rstep=0:CALL &BB
18

1920 IF qc=1 THEN RETURN

1930 LOCATE #3,1,3:PRINT #3,SPACE®
(20):LOCATE #3,1,3:PRINT #3, "Hori-
rad is"jijradxs3"y=X"

1940 rady=0

1850 REM X up/down radius set by ¢
ursor X

1960 WHILE rady=0

1970 LOCATE #3,1,1:PRINT #3, "Use a
rrow keys then press enter "

1980 IF INKEY(0)=0 THEN PLOT x,y+r
step,rtes:rtes=TEST(x,y+rstep+2):r
step=rstep+2:PLOT x,y+rstep, 14
1990 IF INKEY(2)=0 THEN PLOT x,y+r
step,rtes:rtes=TEST(x,y+rstep-2):r
step=rstep-2:PLOT x,y+rstep, 14
2000 IF rstep=0 AND INKEY(8683)=0 TH
EN rady=radx

(47)=0 THEN count= -

2010 IF INKEY(18)=0 THEN rady=ABS(
rstep) :PLOT x,y+rstep,rtes

2020 PLOT x,y, 14

2030 WEND:rstep=0:rtes=0:CALL &BBO
0

2040 CALL &BB18:RETURN

2050 REM XXX type at cursor XXx
2060 CALL &BB1B

2070 LOCATE #3,1,1:PRINT #3," Ty
pe at cursor"

2080 LOCATE #3,1, 1:PRINT #3," Ty
pe at cursor"

2090 LOCATE #3,1,2:PRINT #3," (E
nter) to end"

2100 FOR n=1 TO S00:NEXT:CALL &BBO
0

2110 WHILE t<1

2120 type$=INKEY$

2130 IF INKEY(18)=0 THEN PLOT x,y,

0: t=1:papr=0:GOTO 2200

2140 TAG:PLOT x,y,p

2150 IF types$="" GOTO 2190

2160 IF ASC(type$)=127 THEN PLOT x
,¥,0: x=x-(movx%*4):MOVE x,y:PRINT
" "3:GOTO 2190

2170 PRINT types;

2180 x=x+(movx*8):MOVE x,y

2190 types=""

2200 WEND

2210 t=0:LOCATE #3,1,1:PRINT #3,SP
ACE$(40)

2220 TAGOFF

2230 RETURN

2240 REM xx fill routine XX

2250 IF infil = O THEN RETURN

2260 WHILE lin < 1
2270 IF TEST (x,y)
n =1:GOTO 2330
2280 incl=incl+movx:telf=TEST
ncl,y)

2290 IF telf <> filc THEN MOVE x,y
:DRAW x-(incl-movx),y,p:lin =1
2300 IF x<2 THEN lin=1

2310 IF y<2 THEN 1lin =1

2320 IF y>348 THEN lin=1

2330 WEND

2340 1in=0

2350 WHILE 1lin < 1

2360 incr=incr+movx:terf=TEST
ncr,y)

2370 IF x>575 THEN lin=1

2380 IF y<2 THEN lin=1

2390 IF y>348 THEN lin=1

2400 IF terf <> filc THEN MOVE x,y
:DRAW x+(incr-movx),y,p:lin =1
2410 WEND

2420 1in=0:incl=0:incr=0:telf=17:t
erf=17

<> filc THEN 1i

(x-i

(x+i

48 Computing With The Amstrad — December1987

2430 RETURN

2440 REM xx ink change Xx

2450 CALL &BB1B:IF INKEY(27)=128 T

HEN 2450:CALL &BB1B

2455 LOCATE #3,1,1:INPUT #3,"Ink c

hange Y/N"; y$:IF y3="Y" OR y$="y"
THEN GOTO 2460:ELSE LOCATE #3,1,1
:PRINT #3,SPACE$(40) :RETURN

2460 LOCATE #3,1,1:INPUT #3," Pe
n to change";in$:IF in$="" THEN G

OTO 2460 2470 IF ASC(in3%) < 85 OR
ASC(in$) >112 THEN LOCATE #3,1

, 1:PRINT #3,SPACE$(40) :GOTO 2450
2470 IF ASC(in%) < 65 OR ASC(in$)
>112 THEN LOCATE #3,1,1:PRINT #3,S

PACE$(40) :GOTO 2450

2480 in$=UPPER$(in%$):IF ASC(in$) >
80 THEN GOTO 2450

2490 p=ASC (in3%$)-65

2500 IF p>15 THEN GOTO 2450

2510 CLS #3

2520 WHILE inchange <1

2530 LOCATE #3,1,1: PRINT #3, "Ink

change (Shift)"

2540 PEN #3,p

2550 LOCATE #3,4,2: PRINT #3,"To s

et (Enter)"

2560 LOCATE #3,1,3: PRINT #3,"
INK"3ps","3i3

2570 IF INKEY(21)=32 THEN i=(i+1)

MOD 27

2580 IF INKEY(18)=0 OR INKEY (8)=0
THEN inchange=1

2580 INK p,i

2600 WEND

2610 i=0:inchange=0

2620 CLS #3:PEN #3,4:LOCATE #3,1,3
:PRINT #3, "X";XP0OS3;"Y";YPOS

2630 RETURN

2640 REM %X save screen to memory

XX

2650 FOR n=1 TO 100:NEXT:CALL &BBO
0

2660 PAPER #2,15:CLS #2:CLS #3
2670 CALL 28203

2680 CLS #4

2690 FOR n=1 TO 2000:NEXT n

2700 CALL 26215

2710 FOR n=1 TO 2000:NEXT

2720 CALL &BBOO

2730 LOCATE 2,23:INPUT"Save screen
Y/N";ipt$

2740 IF ipt$="Y" OR ipt$="y" THEN
GOSUB 2770

2750 MODE 1:y=y+2:LOCATE 12, 12:INP
UT "End EASYDRAW Y/N";y$:IF ys$="y"
OR y$="Y" THEN CALL &BCO2:MODE 1:
LOCATE B6,2:PRINT "Easydraw pro
gram has finished":END

2755 MODE 2:GOTO 220

2760 REM xx Save to tape Xxx

2770 SPEED WRITE 1:LOCATE 1,23:INP
UT "Please print name ";i;name$
2780 SAVE name$, B, &6675, &4000

2790 RETURN

2800 REM XXX cursor jump distance
XXX

2810 CALL &BB1B:IF INKEY(45)=128 T
HEN GOTO 2810:CALL &BB1B

2820 CALL &BBOO

2830 PEN #3, 1:LOCATE #3,1, 1:INPUT
#3," Type in horizontal cursor jum
P";jump$:IF jump$=" " OR jumps=""
THEN GOTO 2830

2835 IF ASC(jump$) <48 THEN GOTO 2
830

2840 IF VAL(jump$)<4 THEN LOCATE #
3,1, 1:PRINT #3,SPACE$(40) :GOTO 283
0

2850 jump=VAL(jump$)

2860 LOCATE #3,1, 1:INPUT #3, "Type

in the vertical cursor jump ";jump
y$:IF jumpy$=" " OR jumpy$="" THEN
2860

2865 IF ASC(jumpy$) <48 THEN GOTO

2860

2870 IF VAL(jumpy$)<2Z THEN LOCATE

#3,1, 1:PRINT #3,SPACE$(40):GOTO 28
60

2880 jumpy= VAL(jumpy$)

2890 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

2800 LOCATE #3,1,3:PRINT #3,SPACE$
(20) :LOCATE #3,1,3:PEN #3,4:PRINT

#3, "X"3;XPOS;"Y";YPOS:IF beam=1 THE
N PEN #3, 1:LOCATE #3, 13,3:PRIN

T #3, "Beam on ";:ELSE beam=0:PEN #
3,1:LOCATE #3,13,3:PRINT #3, "Bean

off";:REM beam on/off

Computing With The Amstrad — December1987 49

2910 RETURN

2920 REM draw from memory

2930 CALL &BB1B:IF INKEY(50)=128 T
HEN 2930:CALL &BB1B

2940 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

2950 IF sh=0 THEN LOCATE #3,1,1:PR
INT #3, "No shapes in memory":FOR n
=1 TO 1000:NEXT:LOCATE #3,1, 1:PRIN
T #3, SPACE$(40):RETURN

2960 LOCATE #3,1, 1:INPUT #3, "Type
shape number";shape$:IF shapes$=" "
OR shapes="" THEN GOTO 2860

2965 IF ASC(shape$) <48 THEN GOTO
2960 f

2970 LOCATE #3,1, 1:PRINT #3,SPACE$
(40)

2880 IF VAL(shape$) >= sh THEN LOC
ATE #3,1,1:PRINT #3, "Not available
O to"3sh-1:FOR n=1 TO 1000:NEXT:G
OTO 2940

2990 shape= VAL(shape$)

3000 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

3010 LOCATE #3,1, 1:INPUT #3, "At ma
gnification"imag$:mag= VAL(mag$)
3020 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

3030 IF mag < 0.1 THEN LOCATE #3,1
,» 1:PRINT #3,"A little to small ":
FOR n= 1 TO 1000:NEXT:GOTO 3010
3040 c=0

3050 LOCATE #3,1, 1:PRINT #3,SPACES
(40)

3060 IF INSTR(character$(shape),"
- ")> 1 THEN GOTO 3080

3070 character$(shape)=characters(
shape)+" - "

3080 count=0

3090 WHILE count<
shape))-3)

3100 count=count+1
3110 space=INSTR(count,characters(
shape)," "):minus=INSTR(count,char
acter$(shape),"-")

3120 IF space < minus THEN count=s

{LEN(character$(

pace

3130 IF space > minus THEN count=m
inus

3140 blank$(c)=STR$(count):c=c+1
3150 WEND

3160 REM draw from memory

3170 FOR count=2 TO c—3'STEP 2
3180 drax= VAL(MID$(character$(sha

pe),VAL(blank$(count)),VAL(blank$(
count+1))-VAL(blank$(count))))

3190 dray= VAL(MID$(character$(sha
pe),VAL(blank$(count+1)),VAL(blank

$(count+2))-VAL(blank$(count+1))))
3200 DRAWR magxXdrax,magxdray,p
3210 NEXT count

3220 count=0:RETURN

3230 REM save shapes to tape

3240 CALL &BB1B: IF INKEY(B80)=128
THEN GOTO 3240:CALL &BBR1B

3250 LOCATE #3,1, 1:INPUT #3, "Save
shapes Y/N";satap$:LOCATE #3,1,1:
PRINT #3,SPACE$(40):IF satap$="Y"
OR satap#$="y" THEN GOTO 3280:E

LSE GOTO 3340

3260 LOCATE #3,1, 1:INPUT #3,
name";files

3270 IF LEN(file$) > 8 THEN LOCATE
#3,1, 1:PRINT #3, "Below eight lett
ers":FOR n=1 TO 300:LOCATE #3,1, 1:

PRINT #3,SPACE$(40):G0TO 3260

3280 OPENOUT files

3285 PRINT #9, sh

3280 FOR count=0 TO sh

3300 PRINT #9,characters(count)
3310 NEXT count

3320 CLOSEOUT

3330 CLS #3:PEN #3,4:LOCATE #3,1,3
:PRINT #3, "X";XPOS;"Y";YPOS;

3340 RETURN

3350 REM input file for shapes
3360 CALL &BB1B:IF INKEY(35)=128 T

HEN GOTO 3370:CALL &BB1B

3370 LOCATE #3,1,1:INPUT #3, "Load
shapes Y/N"3;10tap$:LOCATE #3,1,1:

PRINT #3,SPACE$(40):IF lotap$="Y"

OR lotap$="y" THEN GOTO 3380:E

LSE GOTO 3510

3380 LOCATE #3,1, 1:INPUT #3,
name";file$

3380 IF LEN(file$) > 8 THEN LOCATE
#3, 1, 1:PRINT #3, "Below eight lett

ers":FOR n=1 TO 300:LOCATE #3,1,1:

PRINT #3,SPACE$(40):G0TO 3380

3400 OPENIN files

3405 INPUT #9, sh

3410 FOR count =0 TO sh

3420 INPUT #9,character$(count)

3430 NEXT count

3470 FOR count=0 TO sh

3480 IF LEFT$(character$(count), 1)

="-" THEN GOTO 3490:ELSE character

$(count)=" "+characters$(count)

3480 NEXT count:count=0

3500 CLS #3:PEN #3,4:LOCATE #3,1,3
:PRINT #3, "X";XPOS;"Y";YPOS;

3510 RETURN

3520 REM load picture to memory

3530 CALL &BB1B:IF INKEY(368)=128 T

HEN GOTO 3530: CALL &BB1B

3540 LOCATE #3,1, 1:PRINT #3,SPACE$
(40)

ki le

"File

50 Computing With The Amstrad — December1987

X B2BE8 W A0 PBesm off

3550 LOCATE #3,1,1:INPUT #3, "Load
in picture Y/N ";pict$

3560 LOCATE #3,1, 1:PRINT #3,SPACES$
(40)

3570 IF pict$="Y" OR picts$="y" THE

N GOTO 3580:ELSE RETURN

3580 LOCATE #3,1,1:INPUT #3, "Print
picture name " ;picture$

3590 LOCATE #3,1,1:PRINT #3,SPACE®
(40)

3600 LOAD picture$,&B6675

3610 CLS #3

3620 RETURN

3630 REM go to option pages

3640 CALL &BB1B:IF INKEY(52)=128 T

HEN GOTO 3840:CALL &BB1B

3650 LOCATE #3,1, 1:PRINT #3,SPACES
(40)

3660 LOCATE #3,1, 1:INPUT #3, "Go to
options Y/N";yes$:IF yes$="Y" OR
yes$="y" THEN MODE 2:y=y+2: GOTO 2

20: REM go to option pages

36870 LOCATE #3,1, 1:PRINT #3,SPACE®
(40)

3680 RETURN

3690 REM %X save picture to memory
machine code XX

3700 FOR n=26203 TO 26226

3710 READ x

3720 POKE n,x

3730 NEXT n

3740 RETURN

3750 DATA 1,0,64,33,0,192,17,117,1
02,237,176, 201

3760 DATA 1,0,64,33,117,102,17,0,1
92,237, 176,201

Listing II

10 MODE 0:INK 0,13:INK 15,1
20 LOAD "!filename",&C0O00

Listing III

10 MEMORY &B665A :REM save memory
for picture and disc drive

20 GOSUB 3700: REM save picture t
0 memory machine code

30 LOAD "jet",8&6675 :REM load pict
ure into memory

40 MODE O:INK 14,9:INK 0, 13:INK 15
, 1:REM set up screen mode and colo
urs

50 CALL 28215 :
een

60 FOR n= 1 TO 2000:NEXT:REM wait
70 DRAW 640,400,3 :FOR n= 1 TO 100

O:NEXT: REM draw line across pictu
re

80 CALL 26203
re

80 CLS:FOR n= 1 TO 1000:NEXT

100 CALL 26215 :REM new updated pi

cture

110 END

3690 REM x% save picture to memory
machine code XX

3700 FOR n=268203 TO 262286

3710 READ x

3720 POKE n,x

3730 NEXT n

3740 RETURN

3750 DATA 1,0,64,33,0,192,17,117,1

02,237,176,201

3760 DATA 1,0,64,33,117,102,17,0,1

92,237, 176,201

REM picture to scr

REM save new pictu

Computing With The Amstrad — December1987 51

beam Beam toggle .
beamtrlp 'I‘nps between B and Copy

xp, yp Tab sett’ g
fil Draw to Tab'toggl g

tb Tab set

extrax, extray Tab move Jump
mem Shape memory toggle '
memtrlp Start/stop memory

Etpos Clrcle start pos1tlon
ide Number of' sxdes =

cw Clockwxse or anticlockwise. -
tartat Start posxtlon on c1rcumference of centre
ba Draw to Tab.

oly Clrcumference le]ded by number of sxdes
step Cursor moved in plxels (arrow optlon)

’ s Radlus optlon TEST '

50 Start lowers memory and loads machme code
350 Imtxahse, sets up the screen w1ndows and col- .

ours. .
500 Main program.

950 Qulck circle.
1030 Pen colour change.
v 1220 Circles.
1950 Radius. .
G 2050 Type at cursor.
. suoEn -
2440 Ink change.
2640 Save 'screén to memory.
: .."2760 Save memory to tape or dlSC I__ ‘
' 2800 Cursor j jump. -

2920 Draw from memory
__'_3230 Save shapes.
3350 Input shapes.
8520 Load plcture to memory
: 3630 Go to option pages

3690 Machine code, allows saving and recallmg a
plcture to the reserved memory

 Lineto Tab thﬂ; + Tab
 Clear screen Shift + Clr

: 'j'ClrcIe/Polygon . Ctrl + Clr
- ivaraw to Tab .. Ctrl +D ‘
 Fill..Ctrl+F - o
- Go back to optlons .Ctrl + G’
o nput shape ﬁle .Ctrl +1
ump cursor .. Ctrl + J

SUMMARY OF OPTIONS

Memory shape .Ctrl+ M
Pen ink change ... Ctrl + P
Quick circle ... Ctrl + Q

Redraw ... Ctrl + R

Save shape file ... Ctrl + S

Save screen . Ctrl ¥
Tab setting ... Tab

Tab move ... Ctrl + Tab
Type at cursor ... Ctrl + T

52 Computing With The Amstrad — December1987

THink B I ;\\‘\
NOTICED

i
>\
\)
> -
’ 'I\ \ 'l

""\r" !
(U
.’

Adding a printer toyour com-
puter can transform it from an
expensive toy into a genuinely
useful piece of equipment. For
most people printers mean word
processing, hard copy from
spreadsheets or databases,
graphicsorprogramlistings.

Now Tasman, author of one of
the two most popular Amstrad
word processors and many other
printer—related programs, has
added another use to the list of
possibilities.

In conjunction with your
CPC6128 or PCW8256/8512 and
dot matrix printer Tas—Sign will
enable you to produce sign writing
in a variety of styles and sizes. It
runs under CP/M plus and is a
surprisingly versatile piece of soft-
ware.

Tas—Sign differs from simple
“big character” programs in the
range of layout options and the
quality of its output. Whatever
scale of magnification you apply to
the characters, slopes and curves
are always drawn at the limit of
resolution of your printer.

So a C eight inches high is not
composed of an 8 x 8 matrix with
inch tall rectangular pixels. In-
stead it’s a smooth curve, and only if
you look very closely does the step-
ping (or aliasing) become visible.

Tasman has achieved this by
storing the character shapes as

IAN SHARPE
finds Tas-Sign a
way to get good

notices

mathematical descriptions rather
than matrixes as found in your
CPC6128 manual. To look at it
another way, a circledrawn using a
formula to calculate the position of
the points will be smooth if enough
points are used, whereas drawing a
large circle by simply magnifying
one plotted in a matrix will produce
a crude, chunky shape.

Four character sets are supplied:
Standard, Western, Casual and
Block. Casuallooks as though ithas
been produced with a nib or brush
and Block is a stencil-style font.
Each can be printed in a huge range
of sizes with a horizontal stretch
factor, either normally or in italics
and with optional underlining or
inversed colours.

There is no facility to design your
own character set. At first this
might seem like an omission, but
the complex way in which charac-
ters are stored would make writing
such a utility a far from trivial task.

With this in mind, it’s a pity that
a set of graphics characters wasn’t

included as this would have greatly
enhanced the package. Space is
tight on the disc, but there is room
for one more font, so how about it
chaps?

Characters are plotted in one ofa
choice of fill styles, ranging from
solid through various combinations
of horizontal and diagonal stripes.

The patterns can be printed in
single or double strike, single or
double density and there’s an op-
tion to have the print head make an
additional pass to fill in the spaces
between dots. The fill pattern can
also be used to surround the fin-
ished article with a border.

The ability to draw outlines of
characters, leaving the centres
blank, would have been useful,
because I think it might be prefer-
able on larger signs to spare your
printer ribbon and fill in the shapes
with poster paint.

As well as character size, font
and fill style, the program offers
control over most other aspects of
the finished appearance.

There are three spacing options.
Characters can be printed at aregu-
lar pitch or proportionally, in other
words the spacing is adjusted ac-
cordingto the letterinvolved to give
amore even appearance. The latter
option can be further refined to
include kerning where letters that
overlap, such as the combination
WA, are placed closer together.

Computing With The Amstrad — December1987 53

Text can be printed horizontally
for smaller signs or vertically for
large banners. The gaps between
lines are definable and commands
to centre text on the page or align it
with the right edge complete the
picture.

The text of your sign is input row
by row in the editing screen, which
is shown in Figure I. You don’t
design your sign on-screen — in-
stead the final appearance is con-
trolled by setting the various op-
tions and embedding commands in
the text.

Thebest approach isto have your
sign planned on paper with the
settings and commands worked out
before using the program.

The commands can be refer-
enced either from the manual or by
scrolling the Help screen to the
appropriate point. As well as set-
ting up the various options in the
editing screen, the facility to embed
commands can be used to turn
underlining or swap to another font
or fill style part way through print-
ing the sign.

When you've finished inputting
the information you can save it to
disc and all that remains is to let
Tas—Sign get on with the printing.
For all but the smallest pieces this
is the walk—away—and-leave-it
type operation familiar to rhubarb
growers and Mandelbrot set plot-
ters the world over.

Despite Epson control codes
being an industry standard, print-
ers do vary and Tasman has pro-
vided a selection of configurations
for popular printers with the facil-
ity to define customised drivers.

The manual runs to 31 pages and
includes a tutorial section. It is
complete, but Ineeded to read some

”smgle :
: single
off

oniions |

STANDARD TItalics:
Spacing"
Underlme. off
Reverse
: Centenng' off
:i_jPress CTRL 0 to change these Optlons

e Ty 50

prop Gap: 5 .
Border' ﬁ .
:"Stretch 60 :
Hatchlng none

 off

- A sxgn of the times

TAS-SIGN (C)

Lme 1Col: 2ﬂ Insert off COPY—scroll help ESC—prm

[

Drlve is A:

Figure I: The editing screen

parts several times and do some
experimenting before I was clear on
some points.

There are also several examples
on the disc, so by the time you’ve
worked through them you’ll have
an understanding of the basics. If
you have any problems, Tasman
has a reputation for being particu-
larly helpful.

Although there is some
error—trapping, it has to be said
that it’s possible to confuse the
program. For instance, embedding
a command in the top line of text to
make some characters taller than
the overall setting causes it to lock

up. In this case you need to make
the top row as tall as the tallest
letters and reduce the size where
appropriate. Make sure you save
your sign before printing it!

Tas—Sign is a very flexible piece
of software and because of that I
haven’t been able to mention all of
its many features.

It’s probably a little bit pricey for
the casual user. But anyone who
regularly needs good quality sign
writing in small quantities will find
this a comprehensively featured
piece of software that could earn its
keep.

54 Computing With The Amstrad — December1987

FADE

AW

A Y

ROLAND WADDILOVE starts a new
series examining machine code

graphics on the PCW

In this short series we’ll be devel-
oping some simple machine code
graphlcs routines for the PCW.

PCW Machme Code Routmes
ORG OEOOOH
'; | Fancy CLS
fade: CALL USERF
DI , - fast!
e LD B,8
fdi: LD HL5930H ,start
= LD DE32'720 isize
fd2: SLA (HL) ;rotate
INC HL ;next byte
DEC DE
LD AD
ORE .
JP NZfd2 ;done?
'DJNz fdl
RET
; - Swuch on screen
USERF POP BC ;get PC
: CALL OFC5AH :B10S+30
DW _0E9H -
RET
END
Listing I

These can be used to enhance your
Basic programs and will enable you
to produce impressive screen dis-
plays and games like CPC owners.

The routines we’ll be looking at
were originally written for the ar-
cade games Snow Plough and
Christmas Box on the Christmas
Crackers disc. If you have this take
a look and see all the routines in
action.

I'll kick off the series with a
short, simple routine to clear the
screen, though this isn’t the usual
Mallard Basic method:

PRINT CHRS$(27);“E”

It is a fancy version in which the
screen display slowly fades away.

Tosee whatI mean enterand run
Program I. (Don’t forget to save it
first!) The screen will fill with text
and the program will wait for you to
press a key. Tap the spacebar and
the characters will melt away.

The Basic listing is fairly
straightforward: Line 50 clears the
screen and 60 switches off the cur-
sor. The three lines of data at the

continues page 62

10 REM PCW Screen Fade
20 REM By R.A.Waddilove
3@ REM (c) Computing with the Amstrad
40 MEMORY &HDFFF

50 PRINT CHR$(27),“E" CHR$(27),“H”
60 PRINT CHR$(27);t" - --

70 address=&HEQQQ
80FORIzZ1TO3

90 sum=@:READ code$,check$

100 FOR J=1 21 STEP2 L
119 byte-VAL(“&H”+MID$(codes,],2
120 POKE address,byte '
130 sum-sum+byte address addre +1

150 IF. sum<>VAL(“&H”+check$) THEN
~_ PRINT “Errorin data" END

160 NEXT -

170:

180 FOR i=1 TO 200

190 PRINT"Press a key...”;

200 NEXT

210 WHILE INKEYS,.“" WEND

220 WHILE INKEY$="": WEND

230 p=&HE@QQ:CALLp

240 PRINT CHR$(27),“ e” o

250 END .

%o e

270 DATA cmemmeﬂsmassn

o 00982 e

280 DATA 5ACB26231 BTABSCMCE
010474 ’

290 DATA EFFBcscstAFCE%ec
900,749

Program I

Computing With The Amstrad — December1987 55

by Roland
Waddilove

CHRISTMAS is here
once more and Santa is
gettingready to deliver all
his presents. The sleigh is
waiting and all he needs to
do is load up the goodies.

Rudolph has been put
out to pasture and the
sleigh isnow gas powered.
It's a bit of a guzzler so
take it easy and keep an
eye on the fuel gauge.

The presents are scat-
tered throughout Santas's
warehouse and you must
guide him round on his
sleigh and pick them up.

When you have col-
lected all the presents in
one room you can move on
to the next through the
exit at the bottom of the
screen.

This is by no means
easy since many dangers
lurk deep within the
warehouse. Watch out for
the large spider
desceneding on its thread
and dodge the Christmas
crackers bouncing up and
down.

10 REM *xxxx%x% Santa’s Sleigh Xxxxxx
20 REM *x%%x%xx By R.A.Waddilove xxxx

30 * (c)Computing with the Amstrad
40 GOSUB 780:REM Initialise

50 GOSUB 280:LOCATE 5, 15:PEN 2:PRI
NT"Z=left X=right SHIFT=thrust
":LOCATE 10, 20:PAPER 1:PEN 3:PRINT
" Press SPACE to play ":WHILE INKE
Y$<>"":WEND:CALL &BBO6

60 WHILE 1

70 RESTORE 80:FOR
:INK i, j:NEXT

80 DATA 0,15,18,2,24,8,6,1,0,0,0,0
»20,26,3,24

90 screen=1:1ives=3:s5=0

100 WHILE lives

110 GOSUB 380:REM Screen

i=0 TO 15:READ j

56 Computing With The Amstrad — December1987

120 WHILE ok AND y>20

130 GOSUB 970:REM Spider

140 GOSUB 290:REM Santa

150 a=TEST(x+4,y+2) :b=TEST(x+28,y+
2):c=TEST(x+28,y-16):d=TEST(x,y-16
)

160 IF c=5 OR d=5 OR TEST(x-4,y-14
)=5 OR TEST(x+32,y-14)=5 THEN GOSU
B 340

170 IF (a>0 AND a<4) OR (b>0 AND b
<4) OR (c>0 AND c<4) OR (d>0 AND d
{(4) THEN ok=0

180 WEND

190 IF L=0 THEN screen=screen-(scr
een<3):GOSUB 260 ELSE FOR i=1 TO 1
O0:MOVE x+16,y-8:DRAWR INT(RNDx%x100
Y-50, INT(RNDx50)>-25, INT(RNDx16) :NE
XT:1lives=1lives-1

200 WEND

210 IF s>hi THEN hi=s

220 GOSUB 280:LOCATE 10,15:PEN 2:P

APER O:PRINT"Today’s high score";h
i :LOCATE 3,20:PAPER 3:PEN 1:PRINT"
Press SPACE to play another game
":WHILE INKEY$<>"":WEND:CALL &BBO6
230 WEND

240 END

250 REM ——==== Bonus -----

260 LOCATE 7,10:PEN 4:PAPER 6:PRIN
T" BONUS! ":PAPER O:FOR i=g TO O S
TEP -1:S0OUND 1,50,1,13:s=s+1:LOCAT
E 4,24:PRINT MID$(STR$(s), 2):LOCAT
E 14,24:PRINT i:NEXT:FOR i=0 TO 20
OO0 :NEXT:RETURN

270 REM -===--- Trartilelrmew=s

280 MODE 1:BORDER O:INK 0,0:INK 1,

Computing With The Amstrad — December1987 57

24:INK 2,20:INK 3,6:LOCATE 14,5:PE
N 1:PAPER O:PRINT"Santa’s Sleigh":
LOCATE 13,6:PEN 3:PRINT STRING$(16
»208) :RETURN
290 REM Move Santa
300 xd=8%((INKEY(71)>>-1)-(INKEY(63
)>=-13):IF xd THEN santa=251+SGN(xd
)
310 IF INKEY(21>>-1 THEN SOUND 129
»1000,50,12,0,0,15:yd=yd+1:g=g-1:P
EN 12:LOCATE 14,24:PRINT g ELSE IF
(TEST(x,y=-16)=13 OR TEST(x+32,y-1
6)=13) AND yd<2 THEN yd=0 ELSE yds=
yd-1
320 x=x+xd:y=y+yd:TAG:MOVE x-xd,y-

yd:PRINT" ";:MOVE x,y:PRINT CHR$(s
anta); : TAGOFF

330 RETURN

340 REM -=-=--- Present ——==-==

350 IF x<320 THEN i=3 ELSE i=18
360 SOUND 129,20,100,15,1:LOCATE i
>4%(1+((400-y)\16)\4):PRINT" “:s=s
+10:L=L-1:LOCATE 4,24:PEN 12:PRINT
MID$(STR$(s), 2)

370 RETURN

380 REM Screen
390 MODE O:PEN 4:PAPER 6:LOCATE 6,
10:PRINT" Screen";screen:FOR i=0 T
O 5000:NEXT:PAPER 0:CLS

400 g=300:L=8:RESTORE 580

410 FOR i=1 TO 25:READ a$

420 FOR j=1 TO LEN(a$>

430 PEN 1:PAPER 13:IF a$="%x" THEN
PRINT CHR$(240);STRING$(18,9);CHRS
(240);:GOTO 510

440 k=ASC(MID$(as$,j,1))

450 IF k=32 THEN PRINT CHR$(9);
460 IF k=50 THEN PAPER O:PRINT CHR
$(241);

470 IF k=48 THEN PRINT CHR$(240):;
480 IF k=49 THEN PAPER 4:PEN 5:PRI
NT CHR$(242);

490 IF k=51 THEN PEN 13:PAPER 0:PR
INT CHR$(210);

500 NEXT

510 NEXT

520 LOCATE 3,23:PEN 15:PAPER 14:PR

INT*"SCORE" : LOCATE 14, 23:PRINT" GAS
":PAPER O:LOCATE 4,24:PEN 12:PRIN

T MID$(STR$(s),2):LOCATE 14, 24:PRI

NT g

530 ok=1:%x=310:y=50:xd=0:yd=2:sant

a=250:PLOT -10,-10,6

540 sy=8xscreen:sd=1:bug=3:PEN 3:P
APER O:LOCATE 10,bug:PRINT spiderd
$

550 cri1=5:cr2=15:cdl1=1:cd2=-1

560 z=FRE("")

570 RETURN

580 DATA 00000000000000000000

590 DATA O 000000 0

600 DATA O 0] 0 0

610 DATA 0313 (o] 0 3130

620 DATA 0000 o] 0 0000

630 DATA O 03 30 0

640 DATA O 00 00 0

650 DATA 0313 3130

660 DATA 0000 0000, %
670 DATA O 000 000 0

680 DATA 0313 3130

690 DATA 0000 0000, %
700 DATA O 000 000 0

710 DATA 0313 3130

720 DATA 0000 0000, %, %,
*

730 DATA 022222222 222222220

740 DATA 000000000 000000000

750 DATA 00 00 00 00

760 DATA 0O 00 00 00

770 DATA 000000000 000000000

780 REM -=---- Initialise =-=~==-

790 DEFINT a-y

800 ENT 1,10,-10,1,127,-5,1:ENV 1,
1,14,1,14,-1,10

810 SYMBOL 240,0,251,251,251,0,223
5 2235223

820 SYMBOL 241,0,0,0,0,24,60,126,2
55

830 SYMBOL 242,118,247,247,247,0,2
47,247,247

840 SYMBOL 243,159,95,255,127,127,
255,95, 159

850 SYMBOL 244,249, 250,255,254, 254

» 255,250,249

860 SYMBOL 245,7,31,121,187,63,126
» 189,95

870 SYMBOL 246,224,248,158,221,252
» 126,189,250

880 SYMBOL 247,1,1,1,1,1,1,1,1

890 SYMBOL 248,128,128,128,128,128
»128,128,128

900 SYMBOL 252,16,56,16,60,50,185,
253,255

910 SYMBOL 250,8,28,8,60,76,157,25
9,255

58 Computing With The Amstrad — December1987

920 spiderd$=CHR$(247)+CHR$(248)+C
HR$ (8)+CHR$ (8)+CHR$ (10)+CHR$(245) +
CHR$ (246)

930 spideru$=CHR$(245)+CHR$(246)+C
HR$ (8)+CHR$ (8)+CHRs$ (10)+" "

940 cr$=CHR$(243)+CHR$(244)

950 BORDER O:hi=0

360 RETURN

970 REM - Move Spider+Crackers -
980 bug=bug+sd:IF bug=sy OR bug=3
THEN sd=-sd:SOUND 130,2000,100,0,1
50l

990 PEN 3:LOCATE 10,bug:IF sd>0 TH
EN PRINT spiderd$ ELSE PRINT spide

1000 PEN 2:IF screen<3 THEN FOR i=
O TO 100:NEXT:RETURN

1010 LOCATE 5,crl:PRINT ™ *:LOCAT
E 5,cri+cdl :PRINT cr$:cri=cri+cdl:
IF cr1=2 OR cr1=20 THEN cdl=-cdl:S
OUND 132,1000,100,0,1,1

1020 LOCATE 15,cr2:PRINT * *“:LOCA
TE 15,cr2+cd2:PRINT cr$:cr2=cr2+cd
2:IF cr2=2 OR cr2=20 THEN cd2=-cd2
:SOUND 132,1000,100,0,1,1

1030 RETURN

ru$

Computing With The Amstrad
welcomes program listings and
articles for publication. Material
should be typed or computer
printed, and must be double
spaced. Program listings should
be accompanied by cassette tape
or disk. Please enclose a
stamped addressed envelope or
the return of material cannot be

guaranteed. Contributions ac-
cepted for publication by Data-
base Publication or its licensee
will be on an all-rights basis.

© Database Publications and
Planet Publishing Pty Ltd. No
material may be reproduced in
whole or part without permis-
sion. While every care is taken,
the publishers cannot be held

responsible for any errors in arti-
cles, listings or advertisements.

Computing With The Amstrad is
an independent publication and
neither Computing With The
Amstrad and neither Amstrad
plc or Amsoft or their distri-
butors are responsible for any of
the articles in this issue or for
any of the opinions expressed.

Computing With The Amstrad — December1987 59

Fantastic, isn’t it? You plug in
your Amstrad, flick a couple of
switches, and up comes that reas-
suring message telling you that
Basic is at your command.

In this two part series we’ll be
taking a look at how the Basic
works. The general principles are
pretty much the same for most
other micros as well, but there are
just enough differences to make it
very interesting — or frustrating —if
you try to transfer what you learn
here directly to other machines.

Perhaps the most important dif-
ference between Basic and other
high level computing languages
such as Fortran and Cobol is that
Basic is an interpreted language,
whereas the latter two are com-
piled.

That is to say, a program written
in Cobol or Fortran is turned into
machine code en bloc and then exe-
cuted whereas one written in Basic
is turned into machine code state-
ment by statement, each statement
being executed as it is interpreted.
There are compiled Basics, but they
are outside the scope of these ar-
ticles.

This has various effects, both
good and bad. The ones that most
concern us here are that it makes
Basic rather a slow—running lan-
guage — although this isn’t too ap-
parent on most modern machines
unless you go in for a lot of screen
animation.

It also means that the source pro-
gram remains in the computer’s

JOHN HUGHES
explains the inner
workings of
Amstrad Basic in
this, the first of a
two part series

memory all the time it is being
executed, and that in turn means
that it is very easy for us to watch it
working.

Now it’s time to actually poke
around in your Amstrad’s innards —
or PEEK around, to be more pre-
cise. Reset your computer with
Ctrl+Shift+Esc then enter the fol-
lowing Basic program:

10 REM This is a remark

20 PRINT “This is a PRINT
statement”

Then type in the following line in
direct mode. You will probably find
it easier to follow this if you are in
Mode 2, as this allows so much more
on the screen at a time:

FOR J=368 TO 428:PRINT
PEEK(J);:NEXT

and the computer will respond
with:

23 8 10 @ 197 32 &4 (44 138 13 N
135 115 32 97 32 (14 131 189 97 14
1647 8 34 8 20 @ 191 32 34 84 14
185 115 32 185 (15 32 97 32 88 82 73
78 84 32 115 116 97 t1s 181 139 W
110 116 34 2 8 8 0 @

low BASIC WoRKS

What you are seeing here is how
the two lines of Basic program that
you have typed in are stored in the
computer’s memory. Each number
represents what is held in one byte
of memory, starting from the point
at which your program begins.

An important concept to grasp is
that, for hardware reasons, com-
puters store many numbers in what
humans would regard as the wrong
order — the low number first, and
the high number second.

It’'s a bit like 21 (twenty—one)
being written down as 12! In this
case though, rather than tens and
units the hi and lo “columns” are
256 and units respectively. See our
machine code series or Bits and
Bytes to see why.

You can see this so—called
“lo-byte/hi-byte” situation in the
first two numbers — 23,0. These
mean that this line of program is 23
bytes long (including the two bytes
used for this information.)

The next two numbers, 10,0 are
also lo-byte/hi-byte, and tell us the
number of the first line of the pro-
gram.

After this comes the code 197,
which stands for the Basic keyword
REM - all Basic keywords are rep-
resented in a similar way, and the
codes are called tokens. Note, by the
way, that the space which you typed
in after the line number is not rep-
resented in the memory.

Then it gets easy. If you look up
the next 17 numbers, as far as 107,

60 Computing With The Amstrad — December1987

in the User Instructions, you will
see that they are the Ascii codes for
the remaining letters in the state-
ment — 32 is a space, 84 is a capital
T and so on.

Finally, the sequence finishes
with zero as an end—of-line marker.

All Basic command statements
are represented in the same gen-
eral way. If you're still confused.
Figure I may help to make things a
little clearer.

The second statement occupies
34 bytes, as you will see from perus-
ing the next two numbers. Then
comes the second line number, 20,
0, and the token 191, which stands
for PRINT, then a space, 32, a
double quote, 34 and so on.

But note that here the word
PRINT, which formed part of the
message included in the quotation
marks, is listed as a series of Ascii
values — 80, 82, 73, 78, 84 — rather
than as a token, because tokens
only stand for instructions that the
computer has to obey, and not for
similar words which occur inside
quotation marks.

As this point you would probably
assume that each Basic keyword
has its own unique token to go with
it, but this is not quite true. If the
second line of your original pro-
gram had been written as:

20? “This is a PRINT state-
ment”

using? as a substitute for PRINT,
you would find that the token for? is
191, the same as for the keyword
spelled out in full.

This is why when you list a pro-
gram written using? the computer
always replaces it with PRINT —it
has no way of knowing which form
of the command you originally
used.

23051010 07305 Bd 104 o+ 1141070
ol i e R, e i oy &
= o
- w o
5 A - 2 2
s} £ <}) =
€ 5 » E n i
e s 52
oL o £ ~ o 88
SE S8 2 & E

Figure I: How 10 REM This is a remark is stored

But the other obvious equiva-
lence, between REM and’, doesn’t
work in the same way. We've al-
ready seen that the token for REM
is 197, and you might guess that
when use ' as a keyword it too
would have the same token.

Butinfactthetokenis1,192—so,
far from saving memory with the
shorter form, it actually takes up
another byte!

But because the tokens are dif-
ferent, the Basic interpreter is able
todistinguish between them —’isn’t
turned into REM in the same way
as ?is turned into PRINT when you
list a program.

Before you start to see how many
tokens you can work out for your-
self, there are a couple of curiosities
which are worth noticing.

The first is merely a historical
oddity, but the second may help you
to write programs that are easier to
follow when debugging time rolls
round.

You probably know that when
Basic was first developed it re-
quired all assignments to be seen
coming — that is, instead of writing
A=10, you had to write LET A=10.

Until quite recently some com-
puters still used interpreters which

inserted the token for LET (165)
even if it didn’t appear in the origi-
nal program.

The Amstrad doesn’t putitinun-
less you have used it yourself, so
that you really do save memory
space by not using it — which you
don’t if you use ’ and ? instead of
REM and PRINT.

The other oddity, which the Am-
strad shares with very many other
micros, is that anything added to
the right-hand end of certain types
of statement is ignored by the
interpreter if it is enclosed in brack-
ets.

This is especially helpful in con-
ditional jumps, where you can in-
sert little mini-REMs after each
condition instead of at the end of the
whole statement. The following, for
example, is certainly not legal in
terms of what the User Instructions
tell you, but on the other hand it
works and is often very useful:

10 IF j=i THEN 40 (initialise
variables) ELSE IF j>1 THEN
100 (main menu)

Next we'llbe taking a look at how
variables are stored in program
lines, and in particular how the
Amstrad distinguishes between
string and numeric variable types.

Computing With The Amstrad — December1987 61

PCW MACHINE CODE GRAPHICS

continued from page 55

end of the listing contain the ma-
chine code. This is read and stored
above HIMEM at &HE000.

Finally the screen is filled with
text and the program waits at line
220. The machine code fade routine
is called in line 230 then the cursor
is switched back on.

Listing I shows the source code
for the fade routine written using
ZSM a public domain Z80 assem-
bler. If you want to use your PCW to
the full I would recommend using
780 assembly language rather than
8080 as there are many more in-
structions.

In the December 1986 issue of
Computing with the Amstrad 1
briefly introduced graphics with
the old classic arcade game Blitz.
This article contains useful back-
ground information on the PCW’s
memory map and I'm going to as-
sume you’ve read this.

The machine code is copied into
the middle of the 16k block of com-
mon ram at &HE000. This will
enable the code to access all the
PCW’s memory.

The first instruction calls the
subroutine USERF to switch in the
screen ram. This uses BIOS func-
tion call 30 to call an extended BIOS
function SCR RUN ROUTINE
passing it the address of the fade
routine in BC, (popped of the stack).

The main routine uses the B reg-
ister asa counter while HLisloaded
with &H5930, the screen start (not
&5940 as I said in the December
1986 article — a typing error!), and
DE is loaded with the size, 32 lines
each 720 bytes long.

The screen is then cleared by
running through the screen ram,
shifting the contents of each byte
left one bit at a time using SLA
(HL). After eight shifts the screen
will be clear and the routine ends.

e That’s all for now. Next month
things will start to get a bit more
complicated as we look at some
routines for printing large text and
user defined graphics characters.

These words belong to a number-
one hit back in the sixties and are
relevant today because they were
probably being sung by dealers in
the stock and foreign exchange
markets over the last few weeks.

As just about everyone reading
this will know, the Australian Peso
has again been devalued against
everything but the Argentinian
banana. This of course has serious
consequences for those of us who get
our fixes from imported software.
The immediate effect at the time of
writing is a 15% increase across the
board on new stocks of all those
imported goodies. Keen readers will
observe that we have suspended our
regular price list until such time as
the dollar stops “floating”. We have
some items at pre-devaluation
prices but it would pay you to check
before ordering.

“Here we go again... Catch us

The other bit of bad news is the
demise of DKTronics in the UK.
Apparently the sun shone one day
this Northern summer and this
caused a drastic fall in the sales of
computer peripherals. Fortu-
nately RAM Electronics have
stepped into the breach and new
products should be available by the
time you read this. We understand
the major changes in the product
line are combined 256K RAM/Sili-
con Disk Unitsreplacing the previ-
ously separate boxes.

Some Good News!

Just when you were beginning
to feel really miserable we bring
you glad tidings! As mentioned

if you can!”

earlier, we have suspended our
regular price list but replaced it
with another. Our “oldies but good-
ies” range is not subject to price
fluctuation and we have plenty of
stock. Check and compare them
with what you'd pay for a blank
disk. Instant disposable software!
If you don't like it - wipe it. Serious
users won't want to overlook the
bargains in the WP and Spread-
sheet departments. Some of these
items are selling at a quarter of
their original price. Get in quick
and fill those stockings. For those
who've read this far there's a 10%
discount for orders over $100.

With a hint of Christmas in the
air we'll take this opportunity to
wish all our readers a very Merry
Christmas.

62 Computing With The Amstrad —

December1987

SAVINGS ON MAGAZINES

SPECIAL CHRISTMAS OFFER!

BACK ISSUES - $3.45 each COMPLETE SET OF 15 ISSUES - $36
C%ggting
AMSTRAD

$3.60

T Mt e gumon o yon o oy b ndpiey i
tan) istiag, Kirn Resiow, Scrobing ot Sprits

Bias s » Convacess Gaerar a% =l a3 e mare
et v o o the rogales 200

o o 41 N

Losts mose iside....

T ot wssis
23kt wad

7 AR ST GANE
e 8 TR WATES SLINS
VATt OR Sra A veRmR ¢
VATIAD & 0P

% TR WXDB mk«
e

Use your printer
to digitise pictures

» HEW 12 PAGE AMTIX BONUS « « CENTIPODS ~ GAME OF THE MONTH
« RACHNE CODE + BUSIENS SECTION + SOURE: + » MAKING MIDE MUSIE ~ DIGITAL 0O, SAY, WE +
« NEWS » GRAPHIS + GAMS OF THE MONTH <« » NEWS o GRAPNICS » WORD PROCESSING +

* BAVIGS 0% SOPTWARE « AND MUCH HORE > W-DOWR MENUS « REVIEWS »

MSTRAD = AMSTRAD =

o0 e Scstasen owioms. 9n guukep e
£in Repbon Lintings 0 g e

3 AMSTRAD AMSTRAD AMSTRAD AMSTRAD Al

On S Nowe'
O Machine Cage Buck Revem 35 ke Do

,(RAD AMSTRAD AMSTRADAMS'.

S

To take

full advantage
of this

once only offer
fillin order form
on centre page.

$450

> drosivd s SEPTEMBER, 1587

licbiso peasih AUSW&LSM* ory

Al

97%%%3“

% 2 new series
o graphics for e PEH

% Y OVHISINY OYHLISINY GVHISNY |
AMSTRAD AMSTRAD AMSTRAD AMSTRAD AMj

THE SAME OF 'ma woNTH » HOWZRT ~ EXCITING CRICKET GAME « TAME YOUR TURTLE — NEW SERIES *
* GRAPHICS - MOUIND COLDURED CHARACTERS *

* SOUND - 50 WILL NELP SUDDING BACHS
+ BEWS » GRAPHICS -~ NUBBER BANDING » o f « SOHND REVIEW . ABWARKED MUSK SYSTEM »
¥ MO NANTIMANES - BT * BUSINESSIRCTION - SURR DRAW » MORE

MSTRAD =~ AMSTRAD = .Pf YsTRAD ~ AMSTRAD ¢

»g SMSTRAD AMSTRAD AMSTRAD AMSTRAD Abrg,

GaMEs SPECIALS ON Disk
ALL $9.99

2 SOISTUNIRIDER] -y
BESTSELLERS mnmsx "

-
e

Turn to centre pages to order.

